Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation

Meng XIAO , Zhiqing GUO , Yating YANG , Chuan HU , Qian CHENG , Chen ZHANG , Yihan WU , Yanfen CHENG , Wui Lau Man BENSON , Sheung Mei Ng SHAMAY , George Pak-Heng LEUNG , Jingjing LI , Huile GAO , Jinming ZHANG

Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (12) : 1089 -1099.

PDF (1091KB)
Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (12) :1089 -1099. DOI: 10.1016/S1875-5364(24)60685-0
Review
research-article

Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation

Author information +
History +
PDF (1091KB)

Abstract

Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL’s amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.

Keywords

Glycyrrhizic acid / Tumor microenvironment / Nanosystem / Angiogenesis / Self-assembly

Cite this article

Download citation ▾
Meng XIAO, Zhiqing GUO, Yating YANG, Chuan HU, Qian CHENG, Chen ZHANG, Yihan WU, Yanfen CHENG, Wui Lau Man BENSON, Sheung Mei Ng SHAMAY, George Pak-Heng LEUNG, Jingjing LI, Huile GAO, Jinming ZHANG. Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation. Chinese Journal of Natural Medicines, 2024, 22(12): 1089-1099 DOI:10.1016/S1875-5364(24)60685-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo H, Vong CT, Chen H, et al. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine[J]. Chin Med, 2019, 14(1): 48.

[2]

Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing[J]. Signal Transduct Target Ther, 2020, 5(1): 166.

[3]

Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753.

[4]

Zhang W, Li S, Li C, et al. Remodeling tumor microenvironment with natural products to overcome drug resistance[J]. Front Immunol, 2022, 13 :1051998.

[5]

Wan L Q, Tan Y, Jiang M, et al. The prognostic impact of traditional Chinese medicine monomers on tumor-associated macrophages in non-small cell lung cancer[J]. Chin J Nat Med, 2019, 17(10): 729-737.

[6]

Gao Q, Feng J, Liu W, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment[J]. Adv Drug Deliv Rev, 2022, 188: 114445.

[7]

Zhang Y, Sheng Z, Xiao J, et al. Advances in the roles of glycyrrhizic acid in cancer therapy[J]. Front Pharmacol, 2023, 14 : 1265172.

[8]

Wang WS, Chen YS, Kuo CY, et al. DNA damage and NF-κB inactivation implicate glycyrrhizic acid-induced G1 phase arrest in hepatocellular carcinoma cells[J]. J Food Biochem, 2022, 46(7): e14128.

[9]

Lin SC, Chu PY, Liao WT, et al. Glycyrrhizic acid induces human MDA-MB-231 breast cancer cell death and autophagy via the ROS-mitochondrial pathway[J]. Oncol Rep, 2018, 39(2): 703-710.

[10]

Deng QP, Wang MJ, Zeng X, et al. Effects of glycyrrhizin in a mouse model of lung adenocarcinoma[J]. Cell Physiol Biochem, 2017, 41(4): 1383-1392.

[11]

He SQ, Gao M, Fu YF, et al. Glycyrrhizic acid inhibits leukemia cell growth and migrationvia blocking AKT/mTOR/STAT3 signaling[J]. Int J Clin Exp Pathol, 2015, 8(5): 5175-5181.

[12]

Liu S, Hu R, Du J, et al. Glycyrrhizin ameliorates vascular endothelial cell senescence by inhibiting HMGB1 in HFD/STZ-induced diabetic rats and human umbilical vein endothelial cells[J]. Eur J Pharmacol, 2022, 931: 175196.

[13]

Smolarczyk R, Cichoń T, Matuszczak S, et al. The role of glycyrrhizin, an inhibitor of HMGB1 protein, in anticancer therapy[J]. Arch Immunol Ther Exp, 2012, 60(5): 391-399.

[14]

Juin SK, Ghosh S, Majumdar S. Glycyrrhizic acid facilitates anti-tumor immunity by attenuating Tregs and MDSCs: an immunotherapeutic approach[J]. Int Immunopharmacol, 2020, 88: 106932.

[15]

Shi J, Li J, Li J, et al. Synergistic breast cancer suppression efficacy of doxorubicin by combination with glycyrrhetinic acid as an angiogenesis inhibitor[J]. Phytomedicine, 2021, 81: 153408.

[16]

Li Q, Su R, Bao X, et al. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy[J]. Acta Biomater, 2022, 144: 109-120.

[17]

Huang M, Xie X, Gong P, et al. A 18β-glycyrrhetinic acid conjugate with Vorinostat degrades HDAC3 and HDAC6 with improved antitumor effects[J]. Eur J Med Chem, 2020, 188: 111991.

[18]

Liu R, Luo C, Pang Z, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment[J]. Chin Chem Lett, 2023, 34(2): 107518.

[19]

Hu T, Shen C, Wang X, et al. Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy[J]. Chin Chem Lett, 2024, 35 (11): 109562.

[20]

Zhang L, Zhou JP, Yao J. Improved anti-tumor activity and safety profile of a paclitaxel-loaded glycyrrhetinic acid-graft-hyaluronic acid conjugate as a synergistically targeted drug delivery system[J]. Chin J Nat Med, 2015, 13(12): 915-924.

[21]

He S, Lin Q, Qu M, et al. Liver-targeted co-delivery of entecavir and glycyrrhetinic acid based on albumin nanoparticle to enhance the accumulation of entecavir[J]. Mol Pharm, 2018, 15(9): 3953-3961.

[22]

Wang FZ, Xing L, Tang ZH, et al. Codelivery of doxorubicin and shAkt1 by poly(ethylenimine)-glycyrrhetinic acid nanoparticles to induce autophagy-mediated liver cancer combination therapy[J]. Mol Pharm, 2016, 13(4): 1298-1307.

[23]

Yan T, Hui W, Zhu S, et al. Carboxymethyl chitosan based redox-responsive micelle for near-infrared fluorescence image-guided photo-chemotherapy of liver cancer[J]. Carbohydr Polym, 2021, 253: 117284.

[24]

Yang T, Lan Y, Cao M, et al. Glycyrrhetinic acid-conjugated polymeric prodrug micelles co-delivered with doxorubicin as combination therapy treatment for liver cancer[J]. Colloids Surf B Biointerfaces, 2019, 175: 106-115.

[25]

Nishikawa A, Suzuki Y, Kaneko M, et al. Combination of magnetic hyperthermia and immunomodulators to drive complete tumor regression of poorly immunogenic melanoma[J]. Cancer Immunol Immunother, 2023, 72(6): 1493-1504.

[26]

Wang QS, Gao LN, Zhu XN, et al. Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma[J]. Theranostics, 2019, 9(21): 6239-6255.

[27]

Du S, Chen C, Qu S, et al. DNAzyme-assisted nano-herb delivery system for multiple tumor immune activation[J]. Small, 2022, 18(45): 2203942.

[28]

Xu Z, Huang Y, Wu Y, et al. Glycyrrhizic acid-lipid framework nanovehicle loading triptolide for combined immunochemotherapy[J]. ACS Appl Mater Interfaces, 2023, 15(35): 41337-41350.

[29]

Halder J, Mahanty R, Rajwar TK, et al. Nanofibers of glycyrrhizin/hydroxypropyl-β-cyclodextrin inclusion complex: enhanced solubility profile and anti-inflammatory effect of glycyrrhizin[J]. AAPS PharmSciTech, 2023, 24(7): 196.

[30]

Ma Y, Gao Y, Zhao X, et al. A natural triterpene saponin-based pickering emulsion[J]. Chemistry, 2018, 24(45): 11703-11710.

[31]

Li Q, He Q, Xu M, et al. Food-grade emulsions and emulsion gels prepared by soy protein-pectin complex nanoparticles and glycyrrhizic acid nanofibrils[J]. J Agric Food Chem, 2020, 68(4): 1051-1063.

[32]

Xu M, Ma L, Li Q, et al. Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid[J]. Food Funct, 2022, 13(1): 280-289.

[33]

Bi X, Yang L, Lin Y, et al. Efficacy and safety of glycyrrhizic acid in treatment of autoimmune hepatitis[J]. Am J Chin Med, 2023, 51(02): 391-405.

[34]

Wu A, Chen C, Lu J, et al. Preparation of oral core-shell zein nanoparticles to improve the bioavailability of glycyrrhizic acid for the treatment of ulcerative colitis[J]. Biomacromolecules, 2022, 23(1): 210-225.

[35]

Hu LN, Fang XY, Liu HL, et al. Protective effects of 18β-glycyrrhetinic acid on LPS-induced injury in intestinal epithelial cells[J]. Chin J Nat Med, 2013, 11(1): 24-29.

[36]

Qian Y, Zheng Y, Jin J, et al. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold[J]. Adv Mater, 2022, 34(29): 2200521.

[37]

Li S, Guo J, Tian Z, et al. Piperine-loaded glycyrrhizic acid- and PLGA-based nanoparticles modified with transferrin for antitumor[J]. AAPS PharmSciTech, 2021, 22(7): 239.

[38]

Kwon YJ, Son DH, Chung TH, et al. A review of the pharmacological efficacy and safety of licorice root from corroborative clinical trial findings[J]. J Med Food, 2019, 23(1): 12-20.

[39]

Roohbakhsh A, Iranshahy M, Iranshahi M. Glycyrrhetinic acid and its derivatives: anti-cancer and cancer chemopreventive properties, mechanisms of action and structure- cytotoxic activity relationship[J]. Curr Med Chem, 2016, 23(5): 498-517.

[40]

Hussain H, Ali I, Wang D, et al. Glycyrrhetinic acid: a promising scaffold for the discovery of anticancer agents[J]. Expert Opin Drug Discov, 2021, 16(12): 1497-1516.

[41]

Liu ZL, Chen HH, Zheng LL, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer[J]. Signal Transduct Target Ther, 2023, 8(1): 198.

[42]

Carmeliet P. VEGF as a key mediator of angiogenesis in cancer[J]. Oncology, 2005, 69: 4-10.

[43]

Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer[J]. Nat Rev Drug Discov, 2004, 3(5): 391-400.

[44]

Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis[J]. Exp Cell Res, 2006, 312(5): 549-560.

[45]

Łuczak K, Balcerczyk A, Soszyński M, et al. Low concentration of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro[J]. Cell Biol Int, 2004, 28(6): 483-486.

[46]

Kim KJ, Choi JS, Kim KW, et al. The anti-angiogenic activities of glycyrrhizic acid in tumor progression[J]. Phytother Res, 2013, 27(6): 841-846.

[47]

Chang YL, Chen CL, Kuo CL, et al. Glycyrrhetinic acid inhibits ICAM-1 expression via blocking JNK and NF-κB pathways in TNF-α-activated endothelial cells[J]. Acta Pharmacol Sin, 2010, 31(5): 546-553.

[48]

Li J, Tang F, Li R, et al. Dietary compound glycyrrhetinic acid suppresses tumor angiogenesis and growth by modulating antiangiogenic and proapoptotic pathways in vitro and in vivo[J]. J Nutr Biochem, 2020, 77: 108268.

[49]

Mantovani A, Allavena P, Marchesi F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820.

[50]

Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23(8): 1148-1156.

[51]

Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416.

[52]

Hao J, Hu Y, Li Y, et al. Involvement of JNK signaling in IL4-induced M2 macrophage polarization[J]. Exp Cell Res, 2017, 357(2): 155-162.

[53]

Cheng Y, Zhong X, Nie X, et al. Glycyrrhetinic acid suppresses breast cancer metastasis by inhibiting M2-like macrophage polarization via activating JNK1/2 signaling[J]. Phytomedicine, 2023, 114: 154757.

[54]

Tao L, Huang G, Song H, et al. Cancer associated fibroblasts: an essential role in the tumor microenvironment[J]. Oncol Lett, 2017, 14(3): 2611-2620.

[55]

Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1): 131.

[56]

Davidson JS, Baumgarten IM. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships [J]. J Pharmacol Exp Ther, 1988, 246( 3): 1104-1107.

[57]

Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2): 99-115.

[58]

Tang M, Yang M, He K, et al. Glycyrrhetinic acid remodels the tumor microenvironment and synergizes with doxorubicin for breast cancer treatment in a murine model[J]. Nanotechnology, 2021, 32(18): 185702.

[59]

Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function[J]. Annu Rev Immunol, 2012, 30: 531-564.

[60]

Ruan S, Huang Y, He M, et al. Advanced biomaterials for cell-specific modulation and restore of cancer immunotherapy[J]. Adv Sci, 2022, 9(16): 2200027.

[61]

Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174.

[62]

Cui J, Wang X, Li J, et al. Immune exosomes loading self-assembled nanomicelles traverse the blood-brain barrier for chemo-immunotherapy against glioblastoma[J]. ACS Nano, 2023, 17(2): 1464-1484.

[63]

Sui X, Wei W, Yang L, et al. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process[J]. Int J Pharm, 2012, 423(2): 471-479.

[64]

Bernela M, Ahuja M, Thakur R. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles[J]. Eur J Pharm Biopharm, 2016, 105: 141-147.

[65]

Matsuoka K, Miyajima R, Ishida Y, et al. Aggregate formation of glycyrrhizic acid[J]. Colloids Surf A Physicochem Eng Asp, 2016, 500: 112-117.

[66]

Zou L, Li Q, Hou Y, et al. Self-assembled glycyrrhetinic acid derivatives for functional applications: a review[J]. Food Funct, 2022, 13(24): 12487-12509.

[67]

Li J, Cao H, Liu P, et al. Glycyrrhizic acid in the treatment of liver diseases: literature review[J]. Biomed Res Int, 2014, 2014(1): 872139.

[68]

Su X, Wu L, Hu M, et al. Glycyrrhizic acid: a promising carrier material for anticancer therapy[J]. Biomed Pharmacother, 2017, 95: 670-678.

[69]

Baltina L, Kondratenko R. Glycyrrhizic acid derivatives as new antiviral and immune modulating agents[J]. Curr Bioact Compd, 2021, 17(1): 41-58.

[70]

Liang S, Li M, Yu X, et al. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents[J]. Eur J Med Chem, 2019, 166: 328-338.

[71]

Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus[J]. J Med Chem, 2005, 48(4): 1256-1259.

[72]

Stecanella LA, Bitencourt APR, Vaz GR, et al. Glycyrrhizic acid and its hydrolyzed metabolite 18β-glycyrrhetinic acid as specific ligands for targeting nanosystems in the treatment of liver cancer[J]. Pharmaceutics, 2021, 13 (11):1792.

[73]

Lin A, Liu Y, Huang Y, et al. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery[J]. Int J Pharm, 2008, 359(1): 247-253.

[74]

Wu M, Lian B, Deng Y, et al. Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: preparation, characterization, and targeting effect on liver tumors[J]. J Biomater Appl, 2017, 32(2): 191-205.

[75]

Zu Y, Meng L, Zhao X, et al. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery[J]. Int J Nanomed, 2013, 8: 1207-1222.

[76]

Tian G, Pan R, Zhang B, et al. Liver-targeted combination therapy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA[J]. Front Pharmacol, 2019, 10(4).

[77]

Yang FH, Zhang Q, Liang QY, et al. Bioavailability enhancement of paclitaxel via a novel oral drug delivery system: paclitaxel-loaded glycyrrhizic acid micelles[J]. Molecules, 2015, 20(3): 4337-4356.

[78]

Song J, Kim JY, You G, et al. Formulation of glycyrrhizic acid-based nanocomplexes for enhanced anti-cancer and anti-inflammatory effects of curcumin[J]. Biotechnol Bioprocess Eng, 2022, 27(2): 163-170.

[79]

Cao M, Gao Y, Zhan M, et al. Glycyrrhizin acid and glycyrrhetinic acid modified polyethyleneimine for targeted DNA delivery to hepatocellular carcinoma[J]. Int J Mol Sci, 2019, 20 (20): 5074.

[80]

Cai J, Luo S, Lv X, et al. Formulation of injectable glycyrrhizic acid-hydroxycamptothecin micelles as new generation of DNA topoisomerase I inhibitor for enhanced antitumor activity[J]. Int J Pharm, 2019, 571: 118693.

[81]

Ahmad N, Al-Subaie AM, Ahmad R, et al. Brain-targeted glycyrrhizic-acid-loaded surface decorated nanoparticles for treatment of cerebral ischaemia and its toxicity assessment[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 475-490.

[82]

Wang X, Wang P, Xue S, et al. Nanoparticles based on glycyrrhetinic acid modified porphyrin for photodynamic therapy of cancer[J]. Org Biomol Chem, 2018, 16(9): 1591-1597.

[83]

Wang J, Zhao H, Qiao W, et al. Nanomedicine-cum-carrier by co-assembly of natural small products for synergistic enhanced antitumor with tissues protective actions[J]. ACS Appl Mater Interfaces, 2020, 12(38): 42537-42550.

[84]

Zong L, Wang Y, Song S, et al. Formulation and evaluation on synergetic anti-hepatoma effect of a chemically stable and release-controlled nanoself-assembly with natural monomers[J]. Int J Nanomed, 2023, 18: 3407-3428.

[85]

Wang C, Sun X, Feng L, et al. Rational design of a nonclassical liposomal nanoscale drug delivery system for innovative cancer therapy[J]. BMEMat, 2024: e12083.

[86]

Large DE, Abdelmessih RG, Fink EA, et al. Liposome composition in drug delivery design, synthesis, characterization, and clinical application[J]. Adv Drug Deliv Rev, 2021, 176: 113851.

[87]

Wang Y, Wang W, Yao H, et al. Glycyrrhizic acid-based liposome for tumor-targeted delivery of cantharidin[J]. ACS Appl Nano Mater, 2024, 7(1): 1030-1044.

[88]

Liu W, Li Z, Wang Z, et al. Functional system based on glycyrrhizic acid supramolecular hydrogel: toward polymorph control, stabilization, and controlled release[J]. ACS Appl Mater Interfaces, 2023, 15(6): 7767-7776.

[89]

Zhao ZW, Cai MH, Wang P, et al. Application of glycyrrhizic acid and glycyrrhetinic acid in the drug delivery system[J]. J Drug Deliv Sci Technol, 2024, 97: 105754.

[90]

Li Q, Yu X, Zhang S, et al. All-natural, robust, and pH-responsive glycyrrhizic acid-based double network hydrogels for controlled nutrient release[J]. ACS Appl Mater Interfaces, 2023, 15(37): 43633-43647.

[91]

Ma Y, Hao J, Zhao K, et al. Biobased polymeric surfactant: natural glycyrrhizic acid-appended homopolymer with multiple pH-responsiveness[J]. J Colloid Interface Sci, 2019, 541: 93-100.

[92]

Yu X, Xu M, Cai J, et al. Tunable glycyrrhizic acid supramolecular hydrogels via metal ion complexation[J]. Giant, 2024, 17: 100240.

[93]

Li Q, Zhang S, Du R, et al. Injectable self-healing adhesive natural glycyrrhizic acid bioactive hydrogel for bacteria-infected wound healing[J]. ACS Appl Mater Interfaces, 2023, 15(14): 17562-17576.

[94]

Zheng J, Song X, Yang Z, et al. Self-assembling glycyrrhizic acid micellar hydrogels as encapsulant carriers for delivery of curcumin[J]. Colloids Surf A Physicochem Eng Asp, 2023, 658: 130680.

[95]

Yang Y, Cai D, Shu Y, et al. Natural small molecule self-assembled hydrogel inhibited tumor growth and lung metastasis of 4T1 breast cancer by regulating the CXCL1/2-S100A8/9 axis[J]. Mater Des, 2023, 225: 111435.

[96]

Pi W, Wu L, Lu J, et al. A metal ions-mediated natural small molecules carrier-free injectable hydrogel achieving laser-mediated photo-Fenton-like anticancer therapy by synergy apoptosis/cuproptosis/anti-inflammation[J]. Bioact Mater, 2023, 29: 98-115.

[97]

Amreddy N, Babu A, Muralidharan R, et al. Recent advances in nanoparticle-based cancer drug and gene delivery[J]. Adv Cancer Res, 2018, 137: 115-170.

[98]

Wang L, Hu GZ, Lu Y, et al. Anti-pseudo-allergic components in licorice extract inhibit mast cell degranulation and calcium influx[J]. Chin J Nat Med, 2022, 20(6): 421-431.

Funding

Science and Technology Development Fund(SKL-QRCM(UM)2023-2025)

Multidisciplinary Evaluation of Southwest Characteristic TCM Resources Multidisciplinary Interdisciplinary Innovation Team(ZYYCXTD-D-202209)

Science Foundation Project in Sichuan Province(2023ZYD0052)

National Natural Science Foundation of China(82274112)

PDF (1091KB)

84

Accesses

0

Citation

Detail

Sections
Recommended

/