PDF
(1244KB)
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability. The transdermal drug delivery system (TDDS) offers potential solutions for transdermal delivery, enhanced penetration, improved efficacy, and reduced toxicity of natural drugs, aligning with the requirements of modern AD treatment. This review examines the application of hydrogels, microneedles (MNs), liposomes, nanoemulsions, and other TDDS-carrying natural products in AD treatment, with a primary focus on their effects on penetration and accumulation in the skin. The aim is to provide valuable insights into the treatment of AD and other dermatological conditions.
Keywords
Transdermal drug delivery system
/
Natural products
/
Hydrogels
/
Microneedles
/
Atopic dermatitis
/
Stratum corneum.
Cite this article
Download citation ▾
Minghui LI, Yihua XU, Yanan YU, Wanshu LI, Lixia CHEN, Bo ZHAO, Yuli GAO, Jianqing GAO, Hangjuan LIN.
Transdermal delivery of natural products against atopic dermatitis.
Chinese Journal of Natural Medicines, 2024, 22(12): 1076-1088 DOI:10.1016/S1875-5364(24)60681-3
| [1] |
Croft M, Esfandiari E, Chong C, et al. OX40 in the pathogenesis of atopic dermatitis-a new therapeutic target[J]. Am J Clin Dermatol, 2024, 25(3): 447-461.
|
| [2] |
Chrostowska-Plak D, Reich A, Szepietowski JC. Relationship between itch and psychological status of patients with atopic dermatitis[J]. J Eur Acad Dermatol Venereol, 2013, 27(2): e239-242.
|
| [3] |
Mayba JN, Gooderham MJ. Review of atopic dermatitis and topical therapies[J]. J Cutan Med Surg, 2017, 21(3): 227-236.
|
| [4] |
Sroka-Tomaszewska J, Trzeciak M. Molecular mechanisms of atopic dermatitis pathogenesis[J]. Int J Mol Sci, 2021, 22(8): 4130.
|
| [5] |
Oyoshi MK, Larson RP, Ziegler SF, et al. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression [J]. J Allergy Clin Immunol, 2010, 126 (5): 976- 984, 984. e971-975.
|
| [6] |
Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis[J]. Allergy Asthma Immunol Res, 2018, 10(3): 207-215.
|
| [7] |
Weidinger S, Novak N. Atopic dermatitis[J]. Lancet, 2016, 387(10023): 1109-1122.
|
| [8] |
Butala S, Castelo-Soccio L, Seshadri R, et al. Biologic versus small molecule therapy for treating moderate to severe atopic dermatitis: clinical considerations[J]. J Allergy Clin Immunol Pract, 2023, 11(5): 1361-1373.
|
| [9] |
Hendricks AJ, Yosipovitch G, Shi VY. Dupilumab use in dermatologic conditions beyond atopic dermatitis-a systematic review[J]. J Dermatolog Treat, 2021, 32(1): 19-28.
|
| [10] |
Wood Heickman LK, Davallow Ghajar L, Conaway M, et al. Evaluation of hypothalamic-pituitary-adrenal axis suppression following cutaneous use of topical corticosteroids in children: a meta-analysis[J]. Horm Res Paediatr, 2018, 89(6): 389-396.
|
| [11] |
Wu PC, Huang IH, Liu CW, et al. Topical calcineurin inhibitors and risk of lymphoma: a systematic review and meta-analysis[J]. J Dtsch Dermatol Ges, 2021, 19(9): 1265-1269.
|
| [12] |
Cheon C, Park S, Park JS, et al. KM110329 in adult patients with atopic dermatitis: a randomised, double-blind, placebo-controlled, multicentre trial--study protocol[J]. BMC Complement Altern Med, 2013, 13 : 335.
|
| [13] |
Nadora D, Burney W, Chaudhuri RK, et al. Prospective randomized double-blind vehicle-controlled study of topical coconut and sunflower seed oil-derived isosorbide diesters on atopic dermatitis[J]. Dermatitis, 2024, 35(S1): S62-S69.
|
| [14] |
Fingleton J, Sheahan D, Corin A, et al. A randomised controlled trial of topical kanuka honey for the treatment of psoriasis[J]. JRSM Open, 2014, 5 (3): 2042533313518913.
|
| [15] |
Hussain Z, Thu HE, Shuid AN, et al. To-severe atopic dermatitis: a review of human clinical studies[J]. Biomed Pharmacother, 2017, 93: 596-608.
|
| [16] |
Kovacevic AB. Lipid nanocarriers for delivery of poorly soluble and poorly permeable drugs, nanopharmaceuticals[M]. Elsevier, 2020: 151-174.
|
| [17] |
Mandlik DS, Mandlik SK. Atopic dermatitis: new insight into the etiology, pathogenesis, diagnosis and novel treatment strategies[J]. Immunopharmacol Immunotoxicol, 2021, 43(2): 105-125.
|
| [18] |
Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system[J]. Biomed Pharmacother, 2019, 109: 1249-1258.
|
| [19] |
Li Z, Fang X, Yu D. Transdermal drug delivery systems and their use in obesity treatment[J]. Int J Mol Sci, 2021, 22(23): 12754.
|
| [20] |
Prausnitz MR, Langer R. Transdermal drug delivery[J]. Nat Biotechnol, 2008, 26(11): 1261-1268.
|
| [21] |
Wang L, Xian YF, Loo SKF, et al. Baicalin ameliorates 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway[J]. Bioorg Chem, 2022, 119: 105538.
|
| [22] |
Noh SU, Cho EA, Kim HO, et al. Epigallocatechin-3-gallate improves dermatophagoides pteronissinus extract-induced atopic dermatitis-like skin lesions in NC/Nga mice by suppressing macrophage migration inhibitory factor[J]. Int Immunopharmacol, 2008, 8(9): 1172-1182.
|
| [23] |
Lee Y, Oh JH, Li N, et al. Topical skullcapflavone II attenuates atopic dermatitis in a mouse model by directly inhibiting associated cytokines in different cell types[J]. Front Immunol, 2022, 13: 1064515.
|
| [24] |
Tian L, Wang M, Wang Y, et al. Naringenin ameliorates atopic dermatitis by inhibiting inflammation and enhancing immunity through the JAK2/STAT3 pathway[J]. Genes Genomics, 2024, 46(3): 333-340.
|
| [25] |
Karuppagounder V, Arumugam S, Thandavarayan RA, et al. Naringenin ameliorates skin inflammation and accelerates phenotypic reprogramming from M1 to M2 macrophage polarization in atopic dermatitis NC/Nga mouse model[J]. Exp Dermatol, 2016, 25(5): 404-407.
|
| [26] |
Hou DD, Zhang W, Gao YL, et al. Anti-inflammatory effects of quercetin in a mouse model of MC903-induced atopic dermatitis[J]. Int Immunopharmacol, 2019, 74: 105676.
|
| [27] |
Hou DD, Gu YJ, Wang DC, et al. Therapeutic effects of myricetin on atopic dermatitisin vivo andin vitro[J]. Phytomedicine, 2022, 102: 154200.
|
| [28] |
Lee DH, Park JK, Choi J, et al. Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model[J]. Int Immunopharmacol, 2020, 89 (Pt A): 107046.
|
| [29] |
Choi DW, Jung SY, Shon DH, et al. Piperine ameliorates trimellitic anhydride-induced atopic dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation[J]. Molecules, 2020, 25(9): 2186.
|
| [30] |
Yang N, Shao H, Deng J, et al. Dictamnine ameliorates chronic itch in DNFB-induced atopic dermatitis mice via inhibiting mrgprA3[J]. Biochem Pharmacol, 2023, 208: 115368.
|
| [31] |
Huang Y, Zhao C, Zheng G, et al. Dictamnine ameliorates DNFB-induced atopic dermatitis like skin lesions in mice by inhibiting M1 macrophage polarization and promoting autophagy[J]. Biol Pharm Bull, 2024, 47(1): 175-186.
|
| [32] |
Wu S, Yu D, Liu W, et al. Magnoflorine from coptis chinese has the potential to treat DNCB-induced atopic dermatits by inhibiting apoptosis of keratinocyte[J]. Bioorg Med Chem, 2020, 28(2): 115093.
|
| [33] |
Yang CC, Hung YL, Ko WC, et al. Effect of neferine on DNCB-induced atopic dermatitis in HaCaT cells and BALB/c mice[J]. Int J Mol Sci, 2021, 22(15): 8237.
|
| [34] |
Chen X, Lin J, Liang Q, et al. Pseudoephedrine alleviates atopic dermatitis-like inflammatory responses in vivo and in vitro[J]. Life Sci, 2020, 258: 118139.
|
| [35] |
Meng Y, Liu Z, Zhai C, et al. Paeonol inhibits the development of 1-chloro-2, 4-dinitrobenzene-induced atopic dermatitis via mast and T cells in BALB/c mice[J]. Mol Med Rep, 2019, 19(4): 3217-3229.
|
| [36] |
Sharma S, Sethi GS, Naura AS. Curcumin ameliorates ovalbumin-induced atopic dermatitis and blocks the progression of atopic march in mice[J]. Inflammation, 2020, 43(1): 358-369.
|
| [37] |
Caglayan Sozmen S, Karaman M, Cilaker Micili S, et al. Resveratrol ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like lesions through effects on the epithelium[J]. PeerJ, 2016, 4: e1889.
|
| [38] |
Karuppagounder V, Arumugam S, Thandavarayan RA, et al. Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice[J]. Int Immunopharmacol, 2014, 23(2): 617-623.
|
| [39] |
Karuppagounder V, Arumugam S, Thandavarayan RA, et al. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression[J]. Cytokine, 2015, 76(2): 206-213.
|
| [40] |
Choi SE, Jeong MS, Kang MJ, et al. Effect of topical application and intraperitoneal injection of oregonin on atopic dermatitis in NC/Nga mice[J]. Exp Dermatol, 2010, 19(8): e37-e43.
|
| [41] |
Jang AH, Kim TH, Kim GD, et al. Rosmarinic acid attenuates 2,4-dinitrofluorobenzene-induced atopic dermatitis in NC/Nga mice[J]. Int Immunopharmacol, 2011, 11(9): 1271-1277.
|
| [42] |
Bangash Y, Saleem A, Akhtar MF, et al. Pterostilbene reduces the progression of atopic dermatitis via modulating inflammatory and oxidative stress biomarkers in mice[J]. Inflammopharmacology, 2023, 31(3): 1289-1303.
|
| [43] |
Park JH, Yeo IJ, Han JH, et al. Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model[J]. Exp Dermatol, 2018, 27(4): 378-385.
|
| [44] |
Hou DD, Wang XX, Li SJ, et al. Glycyrrhizic acid suppresses atopic dermatitis-like symptoms by regulating the immune balance[J]. J Cosmet Dermatol, 2022, 21(12): 7090-7099.
|
| [45] |
Kang YM, Kim HM, Lee M, et al. Oleanolic acid alleviates atopic dermatitis-like responses in vivo andin vitro[J]. Int J Mol Sci, 2021, 22(21): 12000.
|
| [46] |
Moon GH, Lee Y, Kim EK, et al. Immunomodulatory and anti-inflammatory effects of asiatic acid in a DNCB-induced atopic dermatitis animal model[J]. Nutrients, 2021, 13(7): 2448.
|
| [47] |
Ahn JY, Choi SE, Jeong MS, et al. Effect of taxifolin glycoside on atopic dermatitis-like skin lesions in NC/Nga mice[J]. Phytother Res, 2010, 24(7): 1071-1077.
|
| [48] |
Jeong MS, Choi SE, Kim JY, et al. Atopic dermatitis-like skin lesions reduced by topical application and intraperitoneal injection of hirsutenone in NC/Nga mice[J]. Clin Dev Immunol, 2010, 2010: 618517.
|
| [49] |
Moon PD, Han NR, Lee JS, et al. Use of physcion to improve atopic dermatitis-like skin lesions through blocking of thymic stromal lymphopoietin[J]. Molecules, 2019, 24(8): 1484.
|
| [50] |
Amagai Y, Oida K, Matsuda A, et al. Dihomo-γ-linolenic acid prevents the development of atopic dermatitis through prostaglandin D1 production in NC/Tnd mice[J]. J Dermatol Sci, 2015, 79(1): 30-37.
|
| [51] |
Lin YK, Chang SH, Yang CY, et al. Efficacy and safety of indigo naturalis ointment in treating atopic dermatitis: a randomized clinical trial[J]. J Ethnopharmacol, 2020, 250: 112477.
|
| [52] |
Yen CY, Hsieh CL. Therapeutic effect of Tzu-Yun ointment on patients with atopic dermatitis: a preliminary, randomized, controlled, open-label study[J]. J Altern Complement Med, 2016, 22(3): 237-243.
|
| [53] |
Klövekorn W, Tepe A, Danesch U. A randomized, double-blind, vehicle-controlled, half-side comparison with a herbal ointment containing mahonia aquifolium, viola tricolor and centella asiatica for the treatment of mild-to-moderate atopic dermatitis[J]. Int J Clin Pharmacol Ther, 2007, 45(11): 583-591.
|
| [54] |
Panahi Y, Rastgar N, Zamani A, et al. Comparing the therapeutic effects of aloe vera and olive oil combination cream versus topical betamethasone for atopic dermatitis: a randomized double-blind clinical trial[J]. J Pharmacopuncture, 2020, 23(3): 173-178.
|
| [55] |
Kim NK, Lee DH, Seo HS, et al. Hwangryunhaedoktang in adult patients with atopic dermatitis: a randomised, double-blind, placebo-controlled, two-centre trial-study protocol[J]. BMC Complement Altern Med, 2011, 11 : 68.
|
| [56] |
Fung AY, Look PC, Chong LY, et al. A controlled trial of traditional Chinese herbal medicine in Chinese patients with recalcitrant atopic dermatitis[J]. Int J Dermatol, 1999, 38(5): 387-392.
|
| [57] |
Cheng HM, Chiang LC, Jan YM, et al. The efficacy and safety of a Chinese herbal product (Xiao-Feng-San) for the treatment of refractory atopic dermatitis: a randomized, double-blind, placebo-controlled trial[J]. Int Arch Allergy Immunol, 2011, 155(2): 141-148.
|
| [58] |
Harrison IP, Spada F. Hydrogels for atopic dermatitis and wound management: a superior drug delivery vehicle[J]. Pharmaceutics, 2018, 10(2): 71.
|
| [59] |
Ahn JH, Yun Y, Kim MH, et al. Exploring the efficacy and safety of topical Jaungo application in patients with atopic dermatitis: a pilot randomized, double-blind, placebo-controlled study[J]. Complement Ther Med, 2018, 40: 22-28.
|
| [60] |
Liu J, Mo X, Wu D, et al. Efficacy of a Chinese herbal medicine for the treatment of atopic dermatitis: a randomised controlled study[J]. Complement Ther Med, 2015, 23(5): 644-651.
|
| [61] |
Hon KL, Leung TF, Ng PC, et al. Efficacy and tolerability of a Chinese herbal medicine concoction for treatment of atopic dermatitis: a randomized, double-blind, placebo-controlled study[J]. Br J Dermatol, 2007, 157(2): 357-363.
|
| [62] |
Lee B, Park HJ, Jung SY, et al. Effects of bojungikgi-tang on anorexic patients with atopic dermatitis: a protocol for a randomized, usual care-controlled, assessor-blinded, parallel, pilot clinical trial [J]. Medicine (Baltimore), 2022, 101(9): e28965.
|
| [63] |
Hemrajani C, Negi P, Parashar A, et al. Overcoming drug delivery barriers and challenges in topical therapy of atopic dermatitis: a nanotechnological perspective[J]. Biomed Pharmacother, 2022, 147: 112633.
|
| [64] |
He S, Xie F, Su W, et al. Delivery from chitin hydrogels for NIR-II image-guided therapy of atopic dermatitis[J]. J Funct Biomater, 2023, 14(3): 150.
|
| [65] |
Szekalska M, Sosnowska K, Tomczykowa M, et al. In vivo anti-inflammatory and anti-allergic activities of cynaroside evaluated by using hydrogel formulations[J]. Biomed Pharmacother, 2020, 121: 109681.
|
| [66] |
Hong GS, Choi JY, Suh JS, et al. Development of a natural matrix hybrid hydrogel patch and evaluation of its efficacy against atopic dermatitis[J]. Applied Sciences-Basel, 2020, 10(23): 8759.
|
| [67] |
Yun MY, Yang JH, Kim DK, et al. Therapeutic effects of baicalein on atopic dermatitis-like skin lesions of NC/Nga mice induced by dermatophagoides pteronyssinus[J]. Int Immunopharmacol, 2010, 10(9): 1142-1148.
|
| [68] |
Lim YM, An SJ, Kim HK, et al. Preparation of hydrogels for atopic dermatitis containing natural herbal extracts by gamma-ray irradiation[J]. Radiat Phys Chem, 2009, 78(7-8): 441-444.
|
| [69] |
Conte R, De Luca I, Valentino A, et al. Hyaluronic acid hydrogel containing resveratrol-loaded chitosan nanoparticles as an adjuvant in atopic dermatitis treatment[J]. J Funct Biomater, 2023, 14(2): 82.
|
| [70] |
Wu Y, Zhou Z, Zhang M, et al. Hollow manganese dioxide-chitosan hydrogel for the treatment of atopic dermatitis through inflammation-suppression and ROS scavenging[J]. J Nanobiotechnol, 2023, 21(1): 432.
|
| [71] |
Ferrari Cervi V, Parcianello Saccol C, Henrique Marcondes Sari M, et al. Pullulan film incorporated with nanocapsules improves pomegranate seed oil anti-inflammatory and antioxidant effects in the treatment of atopic dermatitis in mice[J]. Int J Pharm, 2021, 609: 121144.
|
| [72] |
Chiu YH, Wu YW, Hung JI, et al. Epigallocatechin gallate/L-ascorbic acid-loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis[J]. Acta Biomater, 2021, 130: 223-233.
|
| [73] |
Jang HM, Kim H, Park SY, et al. Dissolvable microneedle patch increases the therapeutic effect of Jawoongo on DNCB-induced atopic dermatitis in mice[J]. Complement Med Res, 2023, 30(1): 1-10.
|
| [74] |
Chen YL, Chang CC, Lin YC, et al. Double-layered PLGA/HA microneedle systems as a long-acting formulation of polyphenols for effective and long-term management of atopic dermatitis[J]. Biomater Sci, 2023, 11(14): 4995-5011.
|
| [75] |
Kwon TK, Kim JC. In vitro skin permeation and anti-atopic efficacy of lipid nanocarriers containing water soluble extracts of houttuynia cordata[J]. Drug Dev Ind Pharm, 2014, 40(10): 1350-1357.
|
| [76] |
Lee YS, Jeon SH, Ham HJ, et al. Improved anti-inflammatory effects of liposomal astaxanthin on a phthalic anhydride-induced atopic dermatitis model[J]. Front Immunol, 2020, 11: 565285.
|
| [77] |
Wang Y, Yue Y, Jia R, et al. Design and evaluation of paeonol-loaded liposomes in thermoreversible gels for atopic dermatitis[J]. Gels, 2023, 9(3): 198.
|
| [78] |
Xia Y, Cao K, Jia R, et al. Tetramethylpyrazine-loaded liposomes surrounded by hydrogel based on sodium alginate and chitosan as a multifunctional drug delivery system for treatment of atopic dermatitis[J]. Eur J Pharm Sci, 2024, 193: 106680.
|
| [79] |
Kang MJ, Eum JY, Jeong MS, et al. Facilitated skin permeation of oregonin by elastic liposomal formulations and suppression of atopic dermatitis in NC/Nga mice[J]. Biol Pharm Bull, 2010, 33(1): 100-106.
|
| [80] |
Kang MJ, Eum JY, Jeong MS, et al. Tat peptide-admixed elastic liposomal formulation of hirsutenone for the treatment of atopic dermatitis in NC/Nga mice[J]. Int J Nanomed, 2011, 6: 2459-2467.
|
| [81] |
Kang MJ, Eum JY, Park SH, et al. Pep-1 peptide-conjugated elastic liposomal formulation of taxifolin glycoside for the treatment of atopic dermatitis in NC/Nga mice[J]. Int J Pharm, 2010, 402(1-2): 198-204.
|
| [82] |
Kumar P, Sharma DK, Ashawat MS. Topical creams of piperine loaded lipid nanocarriers for management of atopic dermatitis: development, characterization, and in vivo investigation using BALB/c mice model[J]. J Liposome Res, 2022, 32(1): 62-73.
|
| [83] |
Kumar P, Sharma DK, Ashawat MS. Development of phospholipids vesicular nanocarrier for topical delivery of tea tree oil in management of atopic dermatitis using BALB/c mice model[J]. Eur J Lipid Sci Tech, 2021, 123(10): 2100002.
|
| [84] |
Choi S, Ko J, Park SB, et al. Double emulsion-mediated delivery of polyphenol mixture alleviates atopic dermatitis[J]. Adv Healthc Mater, 2023, 12(30): e2300998.
|
| [85] |
El-Salamouni NS, Ali MM, Abdelhady SA, et al. Evaluation of chamomile oil and nanoemulgels as a promising treatment option for atopic dermatitis induced in rats[J]. Expert Opin Drug Deliv, 2020, 17(1): 111-122.
|
| [86] |
Lin CY, Hsieh YT, Chan LY, et al. Dictamnine delivered by PLGA nanocarriers ameliorated inflammation in an oxazolone-induced dermatitis mouse model[J]. J Control Release, 2021, 329: 731-742.
|
| [87] |
Gehrcke M, Martins CC, de Bastos Brum T, et al. Novel pullulan/gellan gum bilayer film as a vehicle for silibinin-loaded nanocapsules in the topical treatment of atopic dermatitis[J]. Pharmaceutics, 2022, 14(11): 2352.
|
| [88] |
Lee KJ, Ratih K, Kim GJ, et al. Immunomodulatory and anti-inflammatory efficacy of hederagenin-coated maghemite (γ-Fe2O3) nanoparticles in an atopic dermatitis model[J]. Colloids Surf B Biointerfaces, 2022, 210: 112244.
|
| [89] |
Zhu JJ, Tang CH, Luo FC, et al. Topical application of zein-silk sericin nanoparticles loaded with curcumin for improved therapy of dermatitis[J]. Mater Today Chem, 2022, 24: 24.
|
| [90] |
Drew VJ, Huang HY, Tsai ZH, et al. Preparation of gelatin/epigallocatechin gallate self-assembly nanoparticles for transdermal drug delivery[J]. J Polym Res, 2017, 24(11): 188.
|
| [91] |
Wang Y, Tang Z, Guo X, et al. Hyaluronic acid-cyclodextrin encapsulating paeonol for treatment of atopic dermatitis[J]. Int J Pharm, 2022, 623: 121916.
|
| [92] |
Shen C, Shen B, Zhu J, et al. Topical delivery of pluronic F127/TPGS mixed micelles-based hydrogel loaded with glycyrrhizic acid for atopic dermatitis treatment[J]. Drug Dev Ind Pharm, 2021, 47(12): 1975-1985.
|
| [93] |
Mustafa G, Almohsen RA, Alotaibi MM, et al. Characterization and optimization of clove oil-loaded nanomicelles for the possible topical use of bacterial infection-led atopic dermatitis[J]. Beni-Suef U J Basic, 2023, 12(1): 91.
|
| [94] |
Listed NA. Abstracts from 11th george rajka international symposium on atopic dermatitis[J]. Acta Derm Venereol, 2021, 101 (221) :1-68.
|
| [95] |
Tavakoli S, Klar AS. Advanced hydrogels as wound dressings[J]. Biomolecules, 2020, 10(8): 1169.
|
| [96] |
Zhang Y, Xu Y, Gao J. The engineering and application of extracellular matrix hydrogels: a review[J]. Biomater Sci, 2023, 11(11): 3784-3799.
|
| [97] |
Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing[J]. ACS Nano, 2021, 15(8): 12687-12722.
|
| [98] |
Jindal S, Awasthi R, Goyal K, et al. Hydrogels for localized drug delivery: a special emphasis on dermatologic applications[J]. Dermatol Ther, 2022, 35(11): e15830.
|
| [99] |
Chen J, Ren H, Zhou P, et al. Microneedle-mediated drug delivery for cutaneous diseases[J]. Front Bioeng Biotechnol, 2022, 10: 1032041.
|
| [100] |
Faraji Rad Z, Prewett PD, Davies GJ. An overview of microneedle applications, materials, and fabrication methods[J]. Beilstein J Nanotechnol, 2021, 12: 1034-1046.
|
| [101] |
Wang R, Zhong T, Bian Q, et al. PROTAC degraders of androgen receptor-integrated dissolving microneedles for androgenetic alopecia and recrudescence treatment via single topical administration[J]. Small Methods, 2023, 7(1): e2201293.
|
| [102] |
Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: applications and growing therapeutic potential[J]. J Control Release, 2022, 348: 186-205.
|
| [103] |
Luo X, Yang L, Cui Y. Microneedles: materials, fabrication, and biomedical applications[J]. Biomed Microdevices, 2023, 25(3): 20.
|
| [104] |
Wang R, Bian Q, Xu Y, et al. Recent advances in mechanical force-assisted transdermal delivery of macromolecular drugs[J]. Int J Pharm, 2021, 602: 120598.
|
| [105] |
Prakash S. Nano-based drug delivery system for therapeutics: a comprehensive review[J]. Biomed Phys Eng Express, 2023, 9 (5).
|
| [106] |
Cui M, Wiraja C, Chew SWT, et al. Nanodelivery systems for topical management of skin disorders[J]. Mol Pharm, 2021, 18(2): 491-505.
|
| [107] |
Chatzinikoli L, Pippa N, Demetzos C. Preparation and physicochemical characterization of elastic liposomes: a road-map library for their design[J]. J Liposome Res, 2021, 31(1): 11-18.
|
| [108] |
Hussain A, Singh S, Sharma D, et al. Elastic liposomes as novel carriers: recent advances in drug delivery[J]. Int J Nanomed, 2017, 12: 5087-5108.
|
| [109] |
Nainwal N, Jawla S, Singh R, et al. Transdermal applications of ethosomes-a detailed review[J]. J Liposome Res, 2019, 29(2): 103-113.
|
| [110] |
Jafari A, Daneshamouz S, Ghasemiyeh P, et al. Ethosomes as dermal/transdermal drug delivery systems: applications, preparation and characterization[J]. J Liposome Res, 2023, 33(1): 34-52.
|
| [111] |
Niu XQ, Zhang DP, Bian Q, et al. Mechanism investigation of ethosomes transdermal permeation[J]. Int J Pharm X, 2019, 1: 100027.
|
| [112] |
Carita AC, Eloy JO, Chorilli M, et al. Recent advances and perspectives in liposomes for cutaneous drug delivery[J]. Curr Med Chem, 2018, 25(5): 606-635.
|
| [113] |
Sapkota R, Dash AK. Liposomes and transferosomes: a breakthrough in topical and transdermal delivery[J]. Ther Deliv, 2021, 12(2): 145-158.
|
| [114] |
Patel D, Chatterjee B. Identifying underlying issues related to the inactive excipients of transfersomes based drug delivery system[J]. Curr Pharm Des, 2021, 27(7): 971-980.
|
| [115] |
Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery[J]. Pharmaceutics, 2020, 12(9): 855.
|
| [116] |
Pilch E, Musiał W. Liposomes with an ethanol fraction as an application for drug delivery[J]. Int J Mol Sci, 2018, 19(12): 3806.
|
| [117] |
Franklyne JS, Gopinath PM, Mukherjee A, et al. Nanoemulsions: the rising star of antiviral therapeutics and nanodelivery system-current status and prospects[J]. Curr Opin Colloid Interface Sci, 2021, 54: 101458.
|
| [118] |
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery[J]. J Control Release, 2017, 252: 28-49.
|
| [119] |
Amisha, Singh D, Kurmi BD, et al. Recent advances in nanocarrier-based approaches to atopic dermatitis and emerging trends in drug development and design[J]. Curr Drug Deliv, 2024, 21 (7): 932-960.
|
| [120] |
Choi SJ, McClements DJ. Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability[J]. Food Sci Biotechnol, 2020, 29(2): 149-168.
|
| [121] |
Mushtaq A, Mohd Wani S, Malik AR, et al. Recent insights into nanoemulsions: their preparation, properties and applications[J]. Food Chem X, 2023, 18: 100684.
|
| [122] |
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: are we there yet?[J]. Int J Mol Sci, 2020, 22(1): 385.
|
| [123] |
Pegoraro C, MacNeil S, Battaglia G. Transdermal drug delivery: from micro to nano[J]. Nanoscale, 2012, 4(6): 1881-1894.
|
| [124] |
Hartmann R, Weidenbach M, Neubauer M, et al. Stiffness-dependent in vitro uptake and lysosomal acidification of colloidal particles[J]. Angew Chem Int Ed Engl, 2015, 54(4): 1365-1368.
|
| [125] |
Yu M, Xu L, Tian F, et al. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers[J]. Nat Commun, 2018, 9(1): 2607.
|
| [126] |
Kim JH, Ko JA, Kim JT, et al. Preparation of a capsaicin-loaded nanoemulsion for improving skin penetration[J]. J Agric Food Chem, 2014, 62(3): 725-732.
|
| [127] |
Talkar S, Dhoble S, Majumdar A, et al. Transmucosal nanoparticles: toxicological overview[J]. Adv Exp Med Biol, 2018, 1048: 37-57.
|
| [128] |
Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles[J]. Int J Mol Sci, 2019, 20(2): 449.
|
| [129] |
Li N, Peng LH, Chen X, et al. Antigen-loaded nanocarriers enhance the migration of stimulated langerhans cells to draining lymph nodes and induce effective transcutaneous immunization[J]. Nanomedicine, 2014, 10(1): 215-223.
|
| [130] |
Fatfat Z, Fatfat M, Gali-Muhtasib H. Micelles as potential drug delivery systems for colorectal cancer treatment[J]. World J Gastroenterol, 2022, 28(25): 2867-2880.
|
| [131] |
Hanafy NAN, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy[J]. Cancers (Basel), 2018, 10(7): 238.
|
| [132] |
Yousefpour Marzbali M, Yari Khosroushahi A. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review[J]. Cancer Chemother Pharmacol, 2017, 79(4): 637-649.
|
| [133] |
Assem M, Khowessah OM, Ghorab D. Optimization and evaluation of beclomethasone dipropionate micelles incorporated into biocompatible hydrogel using a sub-chronic dermatitis animal model[J]. AAPS PharmSciTech, 2019, 20(4): 152.
|
| [134] |
Izumi R, Azuma K, Izawa H, et al. Chitin nanofibrils suppress skin inflammation in atopic dermatitis-like skin lesions in NC/Nga mice[J]. Carbohydr Polym, 2016, 146: 320-327.
|
| [135] |
Zhai H, Willard P, Maibach HI. Evaluating skin-protective materials against contact irritants and allergens. an in vivo screening human model[J]. Contact Dermatitis, 1998, 38(3): 155-158.
|
| [136] |
Wigger-Alberti W, Hinnen U, Elsner P. Predictive testing of metalworking fluids: a comparison of 2 cumulative human irritation models and correlation with epidemiological data[J]. Contact Dermatitis, 1997, 36(1): 14-20.
|
| [137] |
Paudel KS, Milewski M, Swadley CL, et al. Challenges and opportunities in dermal/transdermal delivery[J]. Ther Deliv, 2010, 1(1): 109-131.
|
| [138] |
Goswami T, Audett J. Chemistry, manufacturing and controls in passive transdermal drug delivery systems[J]. Ther Deliv, 2015, 6(9): 1071-1079.
|
| [139] |
Cheng T, Tai Z, Shen M, et al. Advance and challenges in the treatment of skin diseases with the transdermal drug delivery system[J]. Pharmaceutics, 2023, 15(8): 2165.
|
Funding
NINGBO Medical & Health Leading Academic Discipline Project(2022-ZF02)
Ningbo Major Research and Development Plan Project(2023Z207)