PDF
(985KB)
Abstract
Ten previously undescribed dammarane-type triterpenoid glycosides, cyclocarysaponins A-J (1-10), were isolated from the leaves of Cyclocarya paliurus (Batal.) Iljinskaja. The structures of these compounds were characterized through detailed spectroscopic analysis, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The cytotoxic activities of all isolates were assessed against five human cancer cell lines (Bel-7402, Caski, BGC-823, A2780, and HCT-116). Of the tested compounds, compounds 1, 7, and 9 exhibited selective cytotoxicity against one or more human cancer cell lines.
Keywords
Cyclocarya paliurus
/
Juglandaceae
/
Triterpenoid glycosides
/
Cyclocarysaponin
/
Cytotoxic activities
Cite this article
Download citation ▾
Huiting XI, Mingming YUAN, Jianhua XIE, Yuanxing WANG.
Cyclocarysaponins A-J, dammarane-type triterpenoid glycosides from the leaves of Cyclocarya paliurus.
Chinese Journal of Natural Medicines, 2024, 22(10): 955-964 DOI:10.1016/S1875-5364(24)60646-1
| [1] |
Shu RG, Xu CR, Li LN, et al. Cyclocariosides II and III: two seco-dammarane triterpenoid saponins from Cyclocarya paliurus[J]. Planta Med, 1995, 61(6): 551-554.
|
| [2] |
Fang SZ, Wang JY, Wei ZY, et al. Methods to break seed dormancy in Cyclocarya paliurus (Batal.) Iljinskaja[J]. Sci Hortic-amsterdam, 2006, 110(3): 305-309.
|
| [3] |
Kennelly EJ, Cai LN, Long LN, et al. Novel highly sweet seco-dammarane glycosides from Pterocarya puliurus[J]. J Agric Food Chem, 1995, 43(10): 2602-2607.
|
| [4] |
Zhao XX, Ji YL, Zhu LP, et al. Arjunolic acid from Cyclocarya paliurus ameliorates diabetic retinopathy through AMPK/mTOR/HO-1 regulated autophagy pathway[J]. J Ethnopharmacol, 2022, 284: 114772.
|
| [5] |
Peng HM, He XJ, Chen JX, et al. Hypoglycemic effects of extracts of Cyclocarya paliurus (Batal.) Ijinskaja for experimental diabetic model mice [J]. J Sichuan Trad Chin Med, 2018, 36: 60-63.
|
| [6] |
Xiao HT, Wen B, Ning ZW, et al. Cyclocarya paliurus tea leaves enhances pancreatic β cell preservation through inhibition of apoptosis[J]. Sci Rep, 2020, 10 (1): 19446.
|
| [7] |
Zhao LC, Wang X, Li JX, et al. Effect of Cyclocarya paliurus on hypoglycemic effect in type 2 diabetic mice[J]. Med Sci Monit, 2019, 25: 2976-2983.
|
| [8] |
Tong YP, Li X, Zhu ZP, et al. Extraction and identification of antioxidant ingredients from Cyclocarya paliurus (Batal.) Iljinsk using UHPLC-Q-Orbitrap-MS/MS-based molecular networking [J]. J Chem, 2022, 2022: 1-14.
|
| [9] |
Chen ZL, Jian YQ, Wu Q, et al. Cyclocarya paliurus (Batalin) Iljinskaja: botany, ethnopharmacology, phytochemistry and pharmacology[J]. J Ethnopharmacol, 2022, 285 : 114912.
|
| [10] |
Chen ZL, Wu Q, Wu J, et al. Qingqianliusus A-N, 3, 4-seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus and their biological activities[J]. Arab J Chem, 2023, 16: 104441.
|
| [11] |
Shu RG, Wu CR, Li LN. Studies on the sweet principles from the leaves of Cyclocarya Paliurus (Batal.) Iljinsk [J]. Acta Pharm Sin, 1995, 30(10): 757-761.
|
| [12] |
Yang DJ, Zhong ZC, Xie ZM. Studies on the sweet principles from the leaves of Cyclocarya paliurus (Batal.) Iljinskaya [J]. Acta Pharm Sin, 1992, 27(11): 841-844.
|
| [13] |
Li SB, Xian XY, Peng CF, et al. Two new dammarane triterpenoid saponins from the leaves of Cyclocarya paliurus[J]. J Asian Nat Prod Res, 2022, 25(5): 438-445.
|
| [14] |
Zhou XL, Li SB, Yan MQ, et al. Bioactive dammarane triterpenoid saponins from the leaves of Cyclocarya paliurus[J]. Phytochemistry, 2021, 183: 112618.
|
| [15] |
Zhu LP, Yang HM, Zheng X, et al. Four new dammarane triterpenoid glycosides from the leaves of Cyclocarya paliurus and their SIRT1 activation activities[J]. Fitoterapia, 2021, 154: 105003.
|
| [16] |
Liu W, Deng SP, Zhou DX, et al. 3, 4-seco-Dammarane triterpenoid saponins with anti-inflammatory activity isolated from the leaves of Cyclocarya paliurus[J]. J Agric Food Chem, 2020, 68(7): 2041-2053.
|
| [17] |
Lin Z, Wu ZF, Jiang CH, et al. The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats[J]. Phytomedicine, 2016, 23(12): 1475-1483.
|
| [18] |
Wu ZF, Meng FC, Cao LJ, et al. Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells[J]. Phytochemistry, 2017, 142: 76-84.
|
| [19] |
Chen YJ, Na L, Fan JL, et al. Seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus[J]. Phytochemistry, 2018, 145: 85-92.
|
| [20] |
Xuan TY, Tan J, Sun HH, et al. Cyclocarioside O-Q, three novel seco-dammarane triterpenoid glycosides from the leaves of Cyclocarya paliurus[J]. Nat Prod Res, 2021, 35(1): 167-173.
|
| [21] |
Wu Y, Li YY, Wu X, et al. Chemical constituents from Cyclocarya paliurus (Batal.) Iljinsk [ J]. Biochem Syst Ecol, 2014, 57 : 216-220.
|
| [22] |
Li CG, Deng SP, Liu W, et al. α-Glucosidase inhibitory and anti-inflammatory activities of dammarane triterpenoids from the leaves of Cyclocarya paliurus[J]. Bioorg Chem, 2021, 111 : 104847.
|
| [23] |
Ün RN, Masullo M, Karayildirim T, et al. Triterpene glycosides from Silene odontopetala[J]. Phytochemistry, 2020, 176: 112404.
|
| [24] |
Ono M, Yuhara N, Shimohara T, et al. Calyhedins I-VI: resin glycosides from the rhizomes of Calystegia hederacea[J]. Phytochemistry, 2021, 190: 112888.
|
| [25] |
Liu X, Wang Y, Alizade V, et al. Cruciasides C-G, monoterpenoid glycosides from Cruciata articulate[J]. Phytochemistry, 2021, 189: 112821.
|
| [26] |
Jin X, Sun PP, Hong Y, et al. Puerarin induces apoptosis in A549 cells[J]. Chin J Appl Physicol, 2017, 33(5): 466-469.
|
| [27] |
Zhang W, Han D. miR-185-3p targets Annexin-A8 to inhibit proliferation in cervical cancer cells[J]. Cytotechnology, 2021, 73(4): 585-592.
|
| [28] |
Zhang WH, Zhang ML, Jing WW, et al. Inhibitory effect of CCK-8 on methamphetamine-induced apoptosis[J]. J Forensic Med, 2021, 37(6): 796-805.
|
| [29] |
Yang F, Zhu W, Sun S, et al. Isolation and structural characterization of specific bacterial β-glucuronidase inhibitors from Noni (Morinda citrifolia) fruits[J]. J Nat Prod, 2020, 83: 825-833.
|
| [30] |
Uddin MN, Sharma G, Yang JL, et al. Oleanane triterpenes as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Camellia japonica[J]. Phytochemistry, 2014, 103: 99-106.
|
| [31] |
Li H, Zhao JJ, Chen JL, et al. Diterpenoids from aerial parts of Flickingeria fimbriata and their nuclear factor-kappa-B inhibitory activities[J]. Phytochemistry, 2015, 117: 400-409.
|
Funding
National Natural Science Foundation of China(31960090)
National Natural Science Foundation of China(32160562)
State Key Laboratory of Food Science and Resources, Nanchang University(SKLF-ZZB-202129)