New nor-ent-halimane and nor-clerodane diterpenes from Callicarpa integerrima with anti-MRSA activity

Mengru WANG , Qi WANG , Yanzi MA , Muhammad Aurang ZEB , Xiaoli LI , Feng SHEN , Weilie XIAO

Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (11) : 1003 -1010.

PDF (1467KB)
Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (11) :1003 -1010. DOI: 10.1016/S1875-5364(24)60575-3
Original article
research-article

New nor-ent-halimane and nor-clerodane diterpenes from Callicarpa integerrima with anti-MRSA activity

Author information +
History +
PDF (1467KB)

Abstract

Two new nor-ent-halimane diterpenes and three previously unreported nor-clerodane diterpenes, designated callicaintides A−E (1−5), were isolated from Callicarpa integerrima. Compounds 1 and 2 feature a distinctive 5/6-membered ring system, while compounds 3−5 are characterized by progressively truncated carbon skeletons, containing 18, 17, and 16 carbons, respectively. In addition, four known compounds 6−9 were also identified. Their structures were elucidated using advanced spectroscopic techniques, including nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), ultraviolet (UV), infrared radiation (IR), optical rotatory dispersion (ORD), DP4+ analysis and electronic circular dichroism (ECD), supported by quantum chemical calculations. Compounds 1−9 were evaluated for their anti-MRSA activity. Among them, compound 6 demonstrated significant anti-MRSA activity, with a minimum inhibitory concentration (MIC) of 16 μg·mL−1.

Keywords

Callicarpa integerrima / Halimane diterpenes / Clerodane diterpenes / Structure elucidation / anti-MRSA

Cite this article

Download citation ▾
Mengru WANG, Qi WANG, Yanzi MA, Muhammad Aurang ZEB, Xiaoli LI, Feng SHEN, Weilie XIAO. New nor-ent-halimane and nor-clerodane diterpenes from Callicarpa integerrima with anti-MRSA activity. Chinese Journal of Natural Medicines, 2024, 22(11): 1003-1010 DOI:10.1016/S1875-5364(24)60575-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aires-de-Sousa M. Methicillin-resistant Staphylococcus aureus among animals: current overview[J]. Clin Microbiol Infect, 2017, 6(23): 373-380.

[2]

Kumar V, Shetty P, Arunodaya HS, et al. Potential fluorinated anti-MRSA thiazolidinone derivatives with antibacterial, antitubercular activity and molecular docking studies[J]. Chem Biodivers, 2022, 2(19): e202100532.

[3]

Livermore DM. Antibiotic resistance in staphylococci[J]. Int J Antimicrob Agents, 2000, 16: 3-10.

[4]

Kavi J, Andrews JM, Wise R, et al. Mupirocin-resistant staphylococcus aureus[J]. The Lancet, 1987, 8573(330): 1472-1473.

[5]

Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis[J]. Infect Drug Resist, 2018, 11: 1645-1658.

[6]

Pandey AK, Kumar S. Perspective on plant products as antimicrobials agents: a review[J]. Pharmacologia, 2013, 7(4): 469-480.

[7]

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014[J]. J Nat Prod, 2016, 3(79): 629-661.

[8]

Zeng Q, Wang ZJ, Chen S, et al. Phytochemical and anti-MRSA constituents of Zanthoxylum nitidum[J]. Biomed Pharmacother, 2022, 148: 112758.

[9]

Che CT, Zhang HJ. Plant natural products for human health[J]. Int J Mol Sci, 2019, 4(20): 830-834.

[10]

Chen DL, Sun ZC, Liu YY, et al. Eleucanainones A and B: two dimeric structures from the bulbs of Eleutherine americana with anti-MRSA activity[J]. Org Lett, 2020, 9(22): 3449-3453.

[11]

Jurkaninová S, Kubínová R, Nejezchlebová M, et al. Anti-MRSA activity of abietane diterpenes from Coleus blumei Benth[J]. Nat Prod Res, 2019, 18(35): 3033-3039.

[12]

Pu DB, Zhang XJ, Bi DW, et al. Callicarpins, two Classes of rearranged ent-clerodane diterpenoids from Callicarpa plants blocking NLRP3 inflammasome-induced pyroptosis[J]. J Nat Prod, 2020, 7(83): 2191-2199.

[13]

Jiang W, Ma W, Guan J, et al. Integerrima A-E, phenylethanoid glycosides from the stem of Callicarpa integerrima[J]. J Nat Med, 2023, 3(77): 496-507.

[14]

Bi DW, Zhao YX, Qiu X, et al. Callicarpanes A-L, twelve new clerodane diterpenoids with NLRP3 inflammasome inhibitory activity from Callicarpa integerrima[J]. Chem Biodivers, 2023, 1(20): e202200985.

[15]

Xu J, Wang M, Liu Z, et al. Terpenoids from the Sponge Sarcotragus sp. collected in the south China sea[J]. J Nat Prod, 2023, 2(86): 330-339.

[16]

Pu DB, Lin J, Pu XJ, et al. The discovery of potentially active diterpenoids to inhibit the pyroptosis from Callicarpa arborea[J]. Bioorg Chem, 2022, 128( 2022): 106022.

[17]

Jones WP, Lobo-Echeverri T, Mi Q, et al. Cytotoxic constituents from the Fruiting Branches of Callicarpa americana collected in southern florida[J]. J Nat Prod, 2007, 3(70): 372-377.

[18]

Pietschmann S, Hoffmann K, Voget M, et al. Synergistic effects of miconazole and polymyxin B on microbial pathogens[J]. Vet Res Commun, 2008, 6(33): 489-505.

[19]

Gaussian 09, Revision E. 01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[20]

Grimblat N, Sarotti AM. Computational chemistry to the rescue: modern toolboxes for the assignment of complex molecules by GIAO NMR calculations[J]. Chem Eur J, 2016, 35(22): 12246-12261.

[21]

Shi QQ, Zhang XJ, Wang TT, et al. Euphopias A-C: three rearranged jatrophane diterpenoids with tricyclo[8.3. 0.0(2, 7)]tridecane and tetracyclo[11.3. 0.0(2, 10). 0(3, 7)]hexadecane cores from Euphorbia helioscopia[J]. Org Lett, 2020, 20(22): 7820-7824.

[22]

Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts[J]. J Org Chem, 2015, 24(80): 12526-12534.

[23]

Andrews JM. Determination of minimum inhibitory concentrations[J]. J Antimicrob Chemother, 2001, suppl_1(48): 5-16.

[24]

Xu M, Zhang F, Cheng Z, et al. Functional genome mining reveals a class V lanthipeptide containing a d-amino acid introduced by an F420H2‐dependent reductase[J]. Angew Chem, 2020, 41(132): 18185-18191.

Funding

National Natural Science Foundation of China(22477108)

National Natural Science Foundation of China(82260682)

Program for Changjiang Scholars and Innovative Research Team in University(IRT_17R94)

Project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform(2022YKZY001)

Scientific Research Fund of Yunnan Provincial Department of Education(2023Y0235)

PDF (1467KB)

75

Accesses

0

Citation

Detail

Sections
Recommended

/