Loganin inhibits the ROS-NLRP3-IL-1β axis by activating the NRF2/HO-1 pathway against osteoarthritis

Miao LI , Jiacong XIAO , Baihao CHEN , Zhaofeng PAN , Fanchen WANG , Weijian CHEN , Qi HE , Jianliang LI , Shaocong LI , Ting WANG , Gangyu ZHANG , Haibin WANG , Jianfa CHEN

Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (11) : 977 -990.

PDF (3767KB)
Chinese Journal of Natural Medicines ›› 2024, Vol. 22 ›› Issue (11) :977 -990. DOI: 10.1016/S1875-5364(24)60555-8
Original article
research-article

Loganin inhibits the ROS-NLRP3-IL-1β axis by activating the NRF2/HO-1 pathway against osteoarthritis

Author information +
History +
PDF (3767KB)

Abstract

Loganin (LOG), a bioactive compound derived from Cornus officinalis Siebold & Zucc, has been understudied in the context of osteoarthritis (OA) treatment. In this study, we induced an inflammatory response in chondrocytes using lipopolysaccharide (LPS) and subsequently treated these cells with LOG. We employed fluorescence analysis to quantify reactive oxygen species (ROS) levels and measured the expression of NLRP3 and nuclear factor erythropoietin-2-related factor 2 (NRF2) using real-time quantitative polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence (IF) techniques. Additionally, we developed an OA mouse model by performing medial meniscus destabilization (DMM) surgery and monitored disease progression through micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, safranin O and fast green (S&F) staining, and immunohistochemical (IHC) analysis. Our results indicate that LOG significantly reduced LPS-induced ROS levels in chondrocytes, inhibited the activation of the NLRP3 inflammasome, and enhanced NRF2/heme oxygenase 1 (HO-1) signaling. In vivo, LOG treatment mitigated cartilage degradation and osteophyte formation triggered by DMM surgery, decreased NLRP3 expression, and increased NRF2 expression. These findings suggest that LOG has a protective effect against OA, potentially delaying disease progression by inhibiting the ROS-NLRP3-IL-1β axis and activating the NRF2/HO-1 pathway.

Keywords

Loganin / NRF2/HO-1 signaling / ROS-NLRP3-IL-1β axis / Osteoarthritis

Cite this article

Download citation ▾
Miao LI, Jiacong XIAO, Baihao CHEN, Zhaofeng PAN, Fanchen WANG, Weijian CHEN, Qi HE, Jianliang LI, Shaocong LI, Ting WANG, Gangyu ZHANG, Haibin WANG, Jianfa CHEN. Loganin inhibits the ROS-NLRP3-IL-1β axis by activating the NRF2/HO-1 pathway against osteoarthritis. Chinese Journal of Natural Medicines, 2024, 22(11): 977-990 DOI:10.1016/S1875-5364(24)60555-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.

[2]

Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2016, 2: 16072.

[3]

Litwic A, Edwards MH, Dennison EM, et al. Epidemiology and burden of osteoarthritis[J]. Br Med Bull, 2013, 105: 185-199.

[4]

Di Francesco M, Fragassi A, Pannuzzo M, et al. Management of osteoarthritis: from drug molecules to nano/micromedicines[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022, 14(3): e1780.

[5]

Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective[J]. Biochem Pharmacol, 2020, 180: 114147.

[6]

Palazzo C, Nguyen C, Lefevre-Colau MM, et al. Risk factors and burden of osteoarthritis[J]. Ann Phys Rehabil Med, 2016, 59(3): 134-138.

[7]

van den Bosch MHJ. Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease[J]. Clin Exp Immunol, 2019, 195(2): 153-166.

[8]

McAllister MJ, Chemaly M, Eakin AJ, et al. NLRP3 as a potentially novel biomarker for the management of osteoarthritis[J]. Osteoarthritis Cartilage, 2018, 26(5): 612-619.

[9]

An S, Hu H, Li Y, et al. Pyroptosis plays a role in osteoarthritis[J]. Aging Dis, 2020, 11(5): 1146-1157.

[10]

Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(8): 588-606.

[11]

Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols[J]. Biomed Pharmacother, 2020, 129: 110452.

[12]

Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis[J]. Free Radic Biol Med, 2019, 132: 73-82.

[13]

Minutoli L, Puzzolo D, Rinaldi M, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury[J]. Oxid Med Cell Longev, 2016, 2016: 2183026.

[14]

Liu X, Zhang X, Ding Y, et al. Nuclear factor E2-related factor-2 negatively regulates NLRP3 inflammasome activity by inhibiting reactive oxygen species-induced NLRP3 priming[J]. Antioxid Redox Signal, 2017, 26(1): 28-43.

[15]

Dai Y, Zhang J, Xiang J, et al. Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells[J]. Redox Biol, 2019, 21: 101093.

[16]

Hamarsheh S, Osswald L, Saller BS, et al. Oncogenic Kras(G12D) causes myeloproliferation via NLRP3 inflammasome activation[J]. Nat Commun, 2020, 11(1): 1659.

[17]

Dodson M, de la Vega MR, Cholanians AB, et al. Modulating NRF2 in disease: timing is everything[J]. Annu Rev Pharmacol Toxicol, 2019, 59: 555-575.

[18]

Zeng J, Chen Y, Ding R, et al. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway[J]. J Neuroinflammation, 2017, 14(1): 119.

[19]

Chen Z, Zhong H, Wei J, et al. Inhibition of Nrf2/HO-1 signaling leads to increased activation of the NLRP3 inflammasome in osteoarthritis[J]. Arthritis Res Ther, 2019, 21(1): 300.

[20]

Li X, Ye F, Li L, et al. The role of HO-1 in protection against lead-induced neurotoxicity[J]. Neurotoxicology, 2016, 52: 1-11.

[21]

Huang Y, Li W, Su ZY, et al. The complexity of the Nrf2 pathway: beyond the antioxidant response[J]. J Nutr Biochem, 2015, 26(12): 1401-1413.

[22]

Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17): 3221-3247.

[23]

Wan Y, Shen K, Yu H, et al. Baicalein limits osteoarthritis development by inhibiting chondrocyte ferroptosis[J]. Free Radic Biol Med, 2023, 196: 108-120.

[24]

Wu J, Li H, Hu F, et al. Stevioside attenuates osteoarthritis via regulating Nrf2/HO-1/NF-κB pathway[J]. J Orthop Translat, 2023, 38: 190-202.

[25]

Chen H, Qin J, Shi H, et al. Rhoifolin ameliorates osteoarthritis via the Nrf2/NF-κB axis: in vitro and in vivo experiments[J]. Osteoarthritis Cartilage, 2022, 30(5): 735-745.

[26]

Shi Y, Chen J, Li S, et al. Tangeretin suppresses osteoarthritis progression via the Nrf2/NF-κB and MAPK/NF-κB signaling pathways[J]. Phytomedicine, 2022, 98: 153928.

[27]

Hu J, Zhou J, Wu J, et al. Loganin ameliorates cartilage degeneration and osteoarthritis development in an osteoarthritis mouse model through inhibition of NF-kappaB activity and pyroptosis in chondrocytes[J]. J Ethnopharmacol, 2020, 247: 112261.

[28]

Yang Y, Gu Y, Zhao H, et al. Loganin attenuates osteoarthritis in rats by inhibiting IL-1beta-induced catabolism and apoptosis in chondrocytes via regulation of phosphatidylinositol 3-kinases (PI3K)/Akt[J]. Med Sci Monit, 2019, 25: 4159-4168.

[29]

Huang J, Zhang Y, Dong L, et al. Ethnopharmacology, phytochemistry, and pharmacology of Cornus officinalis Sieb. et Zucc [J]. J Ethnopharmacol, 2018, 213: 280-301.

[30]

Huang F, Wang X, Xiao G, et al. Loganin exerts a protective effect on ischemia-reperfusion-induced acute kidney injury by regulating JAK2/STAT3 and Nrf2/HO-1 signaling pathways[J]. Drug Dev Res, 2022, 83(1): 150-157.

[31]

Cheng YC, Chu LW, Chen JY, et al. Loganin attenuates high glucose-induced schwann cells pyroptosis by inhibiting ROS generation and NLRP3 inflammasome activation[J]. Cells, 2020, 9(9): 1948.

[32]

Pan Z, He Q, Zeng J, et al. Naringenin protects against iron overload-induced osteoarthritis by suppressing oxidative stress[J]. Phytomedicine, 2022, 105: 154330.

[33]

Yan Z, Qi W, Zhan J, et al. Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation[J]. J Cell Mol Med, 2020, 24(22): 13046-13057.

[34]

Fang H, Huang L, Welch I, et al. Early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis[J]. Sci Rep, 2018, 8(1): 2855.

[35]

Du Q, Fu YX, Shu AM, et al. Loganin alleviates macrophage infiltration and activation by inhibiting the MCP-1/CCR2 axis in diabetic nephropathy[J]. Life Sci, 2021, 272: 118808.

[36]

Alizadeh SH, Wanlin T, Chen X, et al. Cartilage tissue engineering approaches need to assess fibrocartilage when hydrogel constructs are mechanically loaded[J]. Front Bioeng Biotechnol, 2022, 9: 787538.

[37]

Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage[J]. Osteoarthritis Cartilage, 2003, 11(10): 747-755.

[38]

Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation[J]. Int J Mol Sci, 2019, 20(13): 3328.

[39]

Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway[J]. Drug Metab Rev, 2006, 38(4): 769-789.

[40]

Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway[J]. Mol Cell Biol, 2020, 40(13): e00099-20.

[41]

Bai Y, Gong X, Dou C, et al. Redox control of chondrocyte differentiation and chondrogenesis[J]. Free Radic Biol Med, 2019, 132: 83-89.

[42]

El AM, Angulo J, Rodriguez-Manas L. Oxidative stress and vascular inflammation in aging[J]. Free Radic Biol Med, 2013, 65: 380-401.

[43]

Portal-Nunez S, Esbrit P, Alcaraz MJ, et al. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis[J]. Biochem Pharmacol, 2016, 108: 1-10.

[44]

Biao Y, Chen J, Liu C, et al. Protective effect of Danshen Zexie Decoction against non-alcoholic fatty liver disease through inhibition of ROS/NLRP3/IL-1beta pathway by Nrf2 signaling activation[J]. Front Pharmacol, 2022, 13: 877924.

[45]

Chu J, Yan B, Zhang J, et al. Casticin attenuates osteoarthritis-related cartilage degeneration by inhibiting the ROS-mediated NF-kappaB signaling pathway in vitro and in vivo[J]. Inflammation, 2020, 43(3): 810-820.

[46]

Abais JM, Xia M, Zhang Y, et al. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector[J]. Antioxid Redox Signal, 2015, 22(13): 1111-1129.

[47]

Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34(5): 637-650.

[48]

Bording-Jorgensen M, Alipour M, Danesh G, et al. Inflammasome activation by ATP enhances citrobacter rodentium clearance through ROS generation[J]. Cell Physiol Biochem, 2017, 41(1): 193-204.

[49]

Han Y, Xu X, Tang C, et al. Reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ROS-TXNIP-NLRP3 biological axis[J]. Redox Biol, 2018, 16: 32-46.

[50]

Bauernfeind F, Bartok E, Rieger A, et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome[J]. J Immunol, 2011, 187(2): 613-617.

[51]

Lin C, Ge L, Tang L, et al. Nitidine chloride alleviates inflammation and cellular senescence in murine osteoarthritis through scavenging ROS[J]. Front Pharmacol, 2022, 13: 919940.

[52]

Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein[J]. J Biol Chem, 2012, 287(50): 41732-41743.

[53]

He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021.

[54]

Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489.

[55]

Li Z, Huang Z, Zhang H, et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-kappaB/NLRP3 crosstalk[J]. Oxid Med Cell Longev, 2021, 2021: 8868361.

[56]

Ni B, Pei W, Qu Y, et al. MCC950, the NLRP3 inhibitor, protects against cartilage degradation in a mouse model of osteoarthritis[J]. Oxid Med Cell Longev, 2021, 2021: 4139048.

[57]

Sanada Y, Tan SJO, Adachi N, et al. Pharmacological targeting of heme oxygenase-1 in osteoarthritis[J]. Antioxidants (Basel), 2021, 10(3): 419.

Funding

National Natural Science Foundation of China(82074462)

Major Research Project of Guangzhou University of Chinese Medicine(2021xk53)

First Affiliated Hospital of Guangzhou University of Chinese Medicine National Center for Traditional Chinese Medicine Inheritance and Innovation Special Research(2022QN02)

PDF (3767KB)

96

Accesses

0

Citation

Detail

Sections
Recommended

/