Graphdiyne-supported nickel nanoparticles for enhanced electrocatalytic water oxidation performance

Yan Yan , Mengyu Lu , Shifu Zhang , Mei Wang , Tongbu Lu

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 197 -202.

PDF (1934KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 197 -202. DOI: 10.1016/j.chphma.2025.02.001
Research Article

Graphdiyne-supported nickel nanoparticles for enhanced electrocatalytic water oxidation performance

Author information +
History +
PDF (1934KB)

Abstract

The substitution of precious metals, such as ruthenium and iridium, to boost the performance of the electrocatalytic water oxidation reaction (OER) is of paramount importance in energy science and technology. However, despite recent advances, the development of nonprecious metals for the OER is still hindered by their high overpotentials, sluggish kinetics, and inadequate stability. Optimization of the electronic structure of non-precious transition metal nanomaterials plays a crucial role in enhancing their performance in the electrocatalytic OER. In this study, we employed a facile reduction method for the in situ loading of nickel nanoparticles onto graphdiyne (GDY) and obtained the Ni NPs/GDY catalyst. Due to the distinctive chemical and physical properties of GDY, its combination with nickel nanoparticles results in strong electronic interactions, effectively modulating the electronic and geometric structures of the Ni NPs/GDY catalyst and significantly improving its electrocatalytic performance in the OER. The Ni NPs/GDY catalyst exhibited a low overpotential of 294 mV at a current density of 10 mA cm−2 and a small Tafel slope of 56.8 mV dec−1 in 1 M KOH, along with excellent electrocatalytic kinetic properties and an ultra-long electrocatalytic stability of approximately 90 h. Compared to the reference catalysts Ni NPs and GDY, the Ni NPs/GDY catalyst demonstrated superior performance, which is primarily attributed to the electronic interactions generated upon the loading of nickel nanoparticles to GDY, which can expose more catalytic sites, facilitate charge transfer, and simultaneously prevent catalyst aggregation during the catalytic process. The findings of this work can provide new insights for exploring more efficient electrocatalysts for the OER.

Keywords

Graphdiyne / Nickel nanoparticles / OER

Cite this article

Download citation ▾
Yan Yan, Mengyu Lu, Shifu Zhang, Mei Wang, Tongbu Lu. Graphdiyne-supported nickel nanoparticles for enhanced electrocatalytic water oxidation performance. ChemPhysMater, 2025, 4(2): 197-202 DOI:10.1016/j.chphma.2025.02.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Yan Yan: Validation, Investigation, Formal analysis, Data curation. Mengyu Lu: Validation, Investigation, Formal analysis, Data curation. Shifu Zhang: Investigation, Data curation. Mei Wang: Writing - review & editing, Writing - original draft, Validation, Supervision, Resources, Project administration, Funding acquisition, Conceptualization. Tongbu Lu: Writing - review & editing, Writing - original draft, Validation, Supervision, Resources, Project administration, Funding acquisition, Conceptualization.

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (22375148) and the National Key R&D Program of China (2022YFA1502902).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.chphma.2025.02.001.

References

[1]

Y. Jia, Y. Li, Q. Zhang, S. Yasin, X. Zheng, K. Ma, Z. Hua, J. Shi, C. Gu, Y. Dou, S. Dou, Deactivation mechanism for water splitting: Recent advances, Carbon Energy, 6 (2024), p. e528, doi: 10.1002/cey2.528.

[2]

Y. Yan, B. Lin, L. Zhang, Y. Wang, H. Zhang, H. Zheng, T. Zhou, Y. Zhan, Z. Yu, Y. Kuang, J. Tang, Electrochemical oxidation processes based on renewable energy towards carbon neutrality: Oxidation fundamentals, catalysts, challenges and prospects, Chem. Eng. J., 487 (2024), 150447, doi: 10.1016/j.cej.2024.150447.

[3]

Y. Zhao, D.P.A. Saseendran, C. Huang, C.A. Triana, W.R. Marks, H. Chen, H. Zhao, G.R. Patzke, Oxygen evolution/reduction reaction catalysts: From in situ monitoring and reaction mechanisms to rational design, Chem. Rev., 123 (2023), pp. 6257-6358, doi: 10.1021/acs.chemrev.2c00515.

[4]

S. Sun, Y. Zhang, X. Shi, W. Sun, C. Felser, W. Li, G. Li, From charge to spin: An in-depth exploration of electron transfer in energy electrocatalysis, Adv. Mater., 36 (2024), 2312524, doi: 10.1002/adma.202312524.

[5]

M. Khalil, I. Dincer, Investigation of a community-based clean energy system holistically with renewable and hydrogen energy options for better sustainable development, J. Clean. Prod., 440 (2024), 140895, doi: 10.1016/j.jclepro.2024.140895.

[6]

S.W. Boettcher, Introduction to green hydrogen, Chem. Rev., 124 (2024), pp. 13095-13098, doi: 10.1021/acs.chemrev.4c00787.

[7]

C. Gunathilake, I. Soliman, D. Panthi, P. Tandler, O. Fatani, N.A. Ghulamullah, D. Marasinghe, M. Farhath, T. Madhujith, K. Conrad, Y. Du, M. Jaroniec, A comprehensive review on hydrogen production, storage, and applications, Chem. Soc. Rev., 53 (2024), pp. 10900-10969, doi: 10.1039/d3cs00731f.

[8]

P. Mane, V. Burungale, H. Bae, C. Seong, J. Heo, S. Ryu, S. Kang, J. Ha, Empowering metal oxide photoanodes via zeolitic imidazolate frameworks for efficient photoelectrochemical water splitting: Current advances and future perspectives, Renew. Sust. Energ. Rev., 202 (2024), 114671, doi: 10.1016/j.rser.2024.114671.

[9]

G. Gao, Z. Sun, X. Chen, G. Zhu, B. Sun, X.L. Huang, H.K. Liu, S.X. Dou, Recent advances in hydrogen production coupled with alternative oxidation reactions, Coord. Chem. Rev., 509 (2024), 215777, doi: 10.1016/j.ccr.2024.215777.

[10]

S. Zheng, H. Xu, H. Zhu, T. Shuai, Q. Zhan, C. Huang, G. Li, Heterostructured electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A, 12 (2024), pp. 18832-18865, doi: 10.1039/d4ta02322f.

[11]

Y. Wu, R. Yao, K. Zhang, Q. Zhao, J. Li, G. Liu, RuO2/CeO2 heterostructure anchored on carbon spheres as a bifunctional electrocatalyst for efficient water splitting in acidic media, Chem. Eng. J., 479 (2024), 147939, doi: 10.1016/j.cej.2023.147939.

[12]

Y. Wu, R. Yao, Q. Zhao, J. Li, G. Liu, La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: Synergistic effect of La doping and oxygen vacancy, Chem. Eng. J., 439 (2022), 135699, doi: 10.1016/j.cej.2022.135699.

[13]

J. Li, X. Gao, X. Jiang, X. Li, Z. Liu, J. Zhang, C.H. Tung, L.Z. Wu, Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution, ACS Catal., 7 (2017), p. 5209z, doi: 10.1021/acscatal.7b01781.

[14]

Z. Wang, Z. Zheng, Y. Xue, F. He, Y. Li, Acidic water oxidation on quantum dots of IrOx/graphdiyne, Adv. Energy Mater., 11 (2021), 2101138, doi: 10.1002/aenm.202101138.

[15]

J. Xu, Z. Lian, B. Wei, Y. Li, O. Bondarchuk, N. Zhang, Z. Yu, A. Araujo, I. Amorim, Z. Wang, B. Li, L. Liu, Strong electronic coupling between ultrafine iridium-ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media, ACS Catal., 10 (2020), p. 3571, doi: 10.1021/acscatal.9b05611.

[16]

Q. Pan, L. Wang, Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts, J. Power Sources, 485 (2020), 229335, doi: 10.1016/j.jpowsour.2020.229335.

[17]

D.R. Kauffman, D. Alfonso, D.N. Tafen, J. Lekse, C. Wang, X. Deng, J. Lee, H. Jang, J. Lee, S. Kumar, C. Matranga, Electrocatalytic oxygen evolution with an atomically precise nickel catalyst, ACS Catal., 6 (2016), p. 1225, doi: 10.1021/acscatal.5b02633.

[18]

R.P. Putra, I.B. Rachman, H. Horino, I.I. Rzeznicka, γ-NiOOH electrocatalyst derived from a nickel dithiooxamide chelate polymer for oxygen evolution reaction in alkaline solutions, Catal. Today, 397 (2021), p. 308, doi: 10.1016/j.cattod.2021.08.017.

[19]

Y. Hao, Y. Xu, J. Liu, X. Sun, Nickel-cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst, J. Mater. Chem. A, 5 (2017), p. 5594, doi: 10.1039/c7ta00299h.

[20]

X. Chen, X. Zheng, C. Zhang, D. Zhang, Y. Gao, S. Chen, Y. Xue, Y. Li, Highly selective conversion of CO2 to formate on SnOx/GDY heterostructured electrocatalyst, Nano Energy, 114 (2023), 108622, doi: 10.1016/j.nanoen.2023.108622.

[21]

G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun., 46 (2010), p. 3256, doi: 10.1039/b922733d.

[22]

H. Yu, Y. Xue, L. Hui, F. He, C. Zhang, Y. Liu, Y. Fang, C. Xing, Y. Li, H. Liu, Y. Li, Graphdiyne-engineered heterostructures for efficient overall water-splitting, Nano Energy, 64 (2019), 103928, doi: 10.1016/j.nanoen.2019.103928.

[23]

X. Gao, H. Liu, D. Wang, J. Zhang, Graphdiyne: Synthesis, properties and applications, Chem. Soc. Rev., 48 (2019), p. 908, doi: 10.1039/c8cs00773j.

[24]

C. Pan, Q. He, C. Li, Promising graphdiyne-based nanomaterials for environmental pollutant control, Sci. China Mater., 67 (2024), p. 3456, doi: 10.1007/s40843-024-3004-5.

[25]

Z. Zheng, L. Qi, X. Luan, S. Zhao, Y. Xue, Y. Li, Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne, Nat. Commun., 15 (2024), p. 7331, doi: 10.1038/s41467-024-51687-x.

[26]

Y. Zhao, N. Yang, H. Yao, D. Liu, L. Song, J. Zhu, S. Li, L. Gu, K. Lin, D. Wang, Stereo-defined co-doping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction, J. Am. Chem. Soc., 141 (2019), p. 7240, doi: 10.1021/jacs.8b13695.

[27]

Y. Gao, Y. Xue, H. Wu, S. Chen, X. Zheng, C. Xing, Y. Li, Self-organized gradually single-atom-layer of metal osmium for an unprecedented hydrogen production from seawater, J. Am. Chem. Soc., 146 (2024), p. 10573, doi: 10.1021/jacs.4c00027.

[28]

Y. Gao, Y. Xue, S. Chen, Y. Zheng, S. Chen, X. Zheng, F. He, C. Huang, Y. Li, Confined growth of highly ordered metal atomic arrays for seawater oxidation, Angew. Chem. Int. Ed., 63 (2024), e202406043, doi: 10.1002/anie.202406043.

[29]

Y. Liu, Y. Xue, H. Yu, L. Hui, B. Huang, Y. Li, Graphdiyne ultrathin nanosheets for efficient water splitting, Adv. Funct. Mater., 31 (2021), 2010112, doi: 10.1002/adfm.202010112.

[30]

Y. Fang, Y. Xue, L. Hui, H. Yu, Y. Liu, C. Xing, F. Lu, F. He, H. Liu, Y. Li, In situ growth of graphdiyne based heterostructure: Toward efficient overall water splitting, Nano Energy, 59 (2019), p. 591, doi: 10.1016/j.nanoen.2019.03.022.

[31]

Z. Zheng, L. Qi, Y. Xue, Y. Li, Highly selective and durable of monodispersed metal atoms in ammonia production, Nano Today, 43 (2022), 101431, doi: 10.1016/j.nantod.2022.101431.

[32]

X. Fu, X. Zhao, T. Lu, M. Yuan, M. Wang, Graphdiyne-based single-atom catalysts with different coordination environments, Angew. Chem. Int. Ed., 62 (2023), e202219242, doi: 10.1002/anie.202219242.

[33]

N. Gao, G. Ren, M. Zhang, L. Mao, Electroless deposition of palladium nanoparticles on graphdiyne boosts electrochemiluminescence, J. Am. Chem. Soc., 146 (2024), p. 3836, doi: 10.1021/jacs.3c11009.

[34]

L. Qi, Y. Gao, Y. Gao, Z. Zheng, X. Luan, S. Zhao, Z. Chen, H. Liu, Y. Xue, Y. Li, Controlled growth of metal atom arrays on graphdiyne for seawater oxidation, J. Am. Chem. Soc., 146 (2024), p. 5669, doi: 10.1021/jacs.3c14742.

[35]

T. He, C. Zhang, G. Will, A. Du, Cobalt porphyrin supported on graphene/Ni (111) surface: Enhanced oxygen evolution/reduction reaction and the role of electron coupling, Catal. Today, 351 (2020), p. 113, doi: 10.1016/j.cattod.2018.10.056.

[36]

Y. Zhang, X. Kong, X. Lin, K. Hu, W. Zhao, G. Xie, X. Lin, X. Liu, Y. Ito, H. Qiu, Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries, J. Energy Chem., 66 (2022), p. 466, doi: 10.1016/j.jechem.2021.08.054.

[37]

W. Xie, S. Zhang, Y. Ni, G. Shi, J. Li, X. Fu, X. Chen, M. Yuan, M. Wang, Graphdiyne-stabilized silver nanoparticles as an efficient electrocatalyst for CO2 reduction, Adv. Energy Sustainability Res., 2 (2021), 2100037, doi: 10.1002/aesr.202100037.

[38]

J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc., 137 (2015), p. 7596, doi: 10.1021/jacs.5b04057.

[39]

Y. Liu, S. Zhang, C. Jiao, H. Chen, G. Wang, W. Wu, Z. Zhuo, J. Mao, Axial phosphate coordination in Co single atoms boosts electrochemical oxygen evolution, Adv. Sci., 10 (2023), 2206107, doi: 10.1002/advs.202206107.

[40]

Z. Xu, S. Wang, W. Tu, L. Shen, L. Wu, S. Xu, H. Zhang, H. Pan, X. Yang, A superior bifunctional electrocatalyst in which directional electron transfer occurs between a Co/Ni alloy and Fe-N-C support, Small, 20 (2024), 2401730, doi: 10.1002/smll.202401730.

[41]

A.S. Souza, L.S. Bezerra, E.S.F. Cardoso, G.V. Fortunato, G. Maia, Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER, J. Mater. Chem. A, 9 (2021), p. 11255, doi: 10.1039/d1ta00817j.

[42]

Y. Zheng, G. Zhang, P. Zhang, S. Chu, D. Wu, C. Sun, B. Qian, S. Chen, S. Tao, L. Song, Structural investigation of metallic Ni nanoparticles with N-doped carbon for efficient oxygen evolution reaction, Chem. Eng. J., 429 (2022), 132122, doi: 10.1039/d1ta00817j.

[43]

N. Yu, F. Wang, X. Jiang, J. Tan, M. Hojamberdiev, H. Hu, Y. Chai, B. Dong, High-valence Co deposition based on selfcatalysis of lattice Mn doping for robust acid water oxidation, J. Energy Chem., 102 (2025), p. 208, doi: 10.1016/j.jechem.2024.10.043.

[44]

Y. Wang, P. Guo, J. Zhou, B. Bai, Y. Li, M. Li, P. Das, X. Wu, L. Zhang, Y. Cui, J. Xiao, Z. Wu, Tuning the Co pre-oxidation process of Co3O4 via geometrically reconstructed F-Co-O active sites for boosting acidic water oxidation, Energy Environ. Sci., 17 (2024), p. 8820, doi: 10.1039/d4ee03982c.

[45]

R. He, J. He, K. Pu, Q. Li, F. Liu, Q. Chen, W. Liu, H. Chen, H. Chai, S. Bao, Y. Tan, Boosting OER activity of Fe-N moieties via Ni induced d-Orbital tailoring for durable rechargeable Zn-Air batteries, Chem. Eng. J, 500 (2024), 156754, doi: 10.1016/j.cej.2024.156754.

[46]

M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia, Y. Zhang, G. Zhang, Z. Yan, X. Sun, Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring, Appl. Catal. B Environ. Energy, 274 (2020), 119091, doi: 10.1016/j.apcatb.2020.119091.

[47]

J. Yu, W. Chen, F. He, W. Song, C. Cao, Electronic oxide-Support strong interactions in the graphdiyne-supported cuprous oxide nanocluster catalyst, J. Am. Chem. Soc., 145 (2023), p. 1803, doi: 10.1021/jacs.2c10976.

AI Summary AI Mindmap
PDF (1934KB)

433

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/