Self-supported cuprous oxide/graphdiyne nanosheets array for efficient ammonia synthesis

Jiayu Yan , Fanle Bu , Lu Qi , Shuya Zhao , Zhaoyang Chen , Yurui Xue

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 131 -136.

PDF (3149KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 131 -136. DOI: 10.1016/j.chphma.2025.01.001
Research Article

Self-supported cuprous oxide/graphdiyne nanosheets array for efficient ammonia synthesis

Author information +
History +
PDF (3149KB)

Abstract

Electrocatalytic reduction of nitrates plays a crucial role in ammonia (NH3) production. In this study, a novel cuprous oxide/graphdiyne (Cu2O/GDY) electrocatalyst was synthesized by growing Cu2O/GDY on a Cu substrate with a porous architecture capable of increasing the number of active sites and enhancing mass transfer ability. The sp-C-Cu bonds between Cu2O and GDY facilitate rapid charge transfer and promote direct electron transport from active sites to reaction intermediates. Consequently, the electrocatalyst exhibits high NH3 production performance with a yield rate (YNH3) of 652.82 µmol h−1 cm−2 and Faradaic efficiency of 82.98% at −1.8 V (vs. SCE) under ambient conditions in an aqueous solution. This work introduces a novel and efficient approach for the in situ fabrication of self-supported heterostructures, thereby enabling high-performance ammonia production under ambient conditions.

Keywords

Carbon materials / Graphdiyne / Heterostructure / Ammonia production / Nitrate reduction reaction

Cite this article

Download citation ▾
Jiayu Yan, Fanle Bu, Lu Qi, Shuya Zhao, Zhaoyang Chen, Yurui Xue. Self-supported cuprous oxide/graphdiyne nanosheets array for efficient ammonia synthesis. ChemPhysMater, 2025, 4(2): 131-136 DOI:10.1016/j.chphma.2025.01.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jiayu Yan: Writing - original draft, Methodology, Investigation, Formal analysis. Fanle Bu: Methodology, Formal analysis. Lu Qi: Formal analysis. Shuya Zhao: Formal analysis. Zhaoyang Chen: Formal analysis. Yurui Xue: Writing - review & editing, Supervision, Investigation, Funding acquisition, Conceptualization.

Acknowledgements

This work was suported by the National Key Research and Development Project of China (2024YFA1509403, 2022YFA1204503), Basic Science Center Project of the National Natural Science Foundation of China (22388101), Taishan Scholars Youth Expert Program of Shandong Province (tsqn201909050), and Natural Science Foundation of Shandong Province (ZR2021JQ07, ZR2024ZD02).

Supplementary materials

Supplementary material associated with this can be found, in the online version, at doi:10.1016/j.chphma.2025.01.001.

References

[1]

G.F. Chen, Y. Yuan, H. Jiang, S.Y. Ren, L.X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst, Nat. Energy, 8 (2020), pp. 605-613, doi: 10.1038/s41560-020-0654-1.

[2]

H. Zou, W. Rong, S. Wei, Y. Ji, L. Duan, Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser, Proc. Natl. Acad. Sci. U. S. A., 47 (2020), pp. 29462-29468, doi: 10.1073/pnas.2015108117.

[3]

J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A.W.M. Chan, L. Xu, Y. Shi, Y. Du, W. Hao, P.K. Wong, J. Wang, S.X. Dou, L. Zhang, J.C. Yu, Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters, J. Am. Chem. Soc., 15 (2020), pp. 7036-7046, doi: 10.1021/jacs.0c00418.

[4]

Z.Y. Wu, M. Karamad, X. Yong, Q. Huang, D.A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.Y. Chen, J.Y. Kim, Y. Xia, K. Heck, Y. Hu, M.S. Wong, Q. Li, I. Gates, S. Siahrostami, H. Wang, Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst, Nat. Commun., 12 (2021), p. 2870, doi: 10.1038/s41467-021-23115-x.

[5]

Y. Ma, T. Yang, H. Zou, W. Zang, Z. Kou, L. Mao, Y. Feng, L. Shen, S.J. Pennycook, L. Duan, X. Li, J. Wang, Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia, Adv. Mater., 33 (2020), 2002177, doi: 10.1002/adma.202002177.

[6]

F. Jiao, B. Xu, Electrochemical ammonia synthesis and ammonia fuel cells, Adv. Mater., 31 (2019), 1805173, doi: 10.1002/adma.201805173.

[7]

Y. Li, Y.K. Go, H. Ooka, D. He, F. Jin, S.H. Kim, R. Nakamura, Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media, Angew. Chem. Int. Ed., 24 (2020), pp. 9744-9750, doi: 10.1002/anie.202002647.

[8]

Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia, Angew. Chem., Int. Ed., 13 (2020), pp. 5350-5354, doi: 10.1002/anie.201915992.

[9]

L. Zhou, Y. Jiang, Y. Wan, X. Liu, H. Zhou, W. Li, N. Li, X. Wang, Electron flow shifts from anode respiration to nitrate reduction during electroactive biofilm thickening, Environ. Sci. Technol., 15 (2020), pp. 9593-9600, doi: 10.1021/acs.est.0c01343.

[10]

Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D.H. Nam, C.S. Tan, Y. Ding, J. Wu, Y. Lum, C.T. Dinh, D. Sinton, G. Zheng, E.H. Sargent, Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption, J. Am. Chem. Soc., 12 (2020), pp. 5702-5708, doi: 10.1021/jacs.9b13347.

[11]

L. Hollevoet, F. Jardali, Y. Gorbanev, J. Creel, A. Bogaerts, J.A. Martens, Towards green ammonia synthesis through plasma-driven nitrogen oxidation and catalytic reduction, Angew. Chem., Int. Ed., 52 (2020), pp. 23825-23829, doi: 10.1002/anie.202011676.

[12]

S. Zhao, Z. Chen, H. Liu, L. Qi, Z. Zheng, X. Luan, Y. Gao, R. Liu, J. Yan, F. Bu, Y. Xue, Y. Li, Graphdiyne-based multiscale catalysts for ammonia synthesis, ChemSusChem, 23 (2023), e202300861, doi: 10.1002/cssc.202300861.

[13]

Y. Tan, Y. Zhao, X. Chen, S. Zhai, X. Wang, L. Su, H. Yang, W.Q. Deng, G.W. Ho, H. Wu, Cooperative Cu with defective MXene for enhanced nitrate electroreduction to ammonia, EcoEnergy, 2 (2024), pp. 258-267, doi: 10.1002/ece2.33.

[14]

Y. Sun, Z. Sun, W. Zhang, W. Li, C. Liu, Q. Zhao, Z. Huang, H. Li, J. Wang, T. Ma, Fabricating freestanding electrocatalyst with bismuth-iron dual active sites for efficient ammonia synthesis in neutral media, EcoEnergy, 1 (2023), pp. 186-196, doi: 10.1002/ece2.3.

[15]

Y. Dong, Y. Rao, H. Liu, H. Zhang, R. Hu, Y. Chen, Y. Yao, H. Yang, Highly efficient chemical production via electrified, transient high-temperature synthesis, eScience, 4 (2024), 100253, doi: 10.1016/j.esci.2024.100253.

[16]

S. Li, J. Liang, P. Wei, Q. Liu, L. Xie, Y. Luo, X. Sun, ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions, eScience, 4 (2022), pp. 382-388, doi: 10.1016/j.esci.2022.04.008.

[17]

J.L. Yang, The coupling of deNOx from exhausted gas and electrochemical ammonia synthesis, Acta Phys.-Chim. Sin., 11 (2020), doi: 10.3866/PKU.WHXB202004045.

[18]

H. Wang, Q. Wang, C.D. Wu, Continuous synthesis of ammonia, Chin. J. Struc. Chem. (2024), 100437, doi: 10.1016/j.cjsc.2024.100437.

[19]

Y. Du, X. Meng, Y. Ma, J. Qi, G. Xu, H. Zou, J. Qiu, Dimensionality engineering toward carbon materials for electrochemical CO2 reduction: Progress and prospect, Adv. Funct. Mater., 34 (2024), p. 2408013, doi: 10.1002/adfm.202408013.

[20]

X. Fan, J. Liang, L. Zhang, D. Zhao, L. Yue, Y. Luo, Q. Liu, L. Xie, N. Li, B. Tang, Q. Kong, X. Sun, Enhanced electrocatalytic nitrate reduction to ammonia using plasma-induced oxygen vacancies in CoTiO3-x nanofiber, Carbon Neutral., 1 (2022), pp. 6-13, doi: 10.1002/cnl2.8.

[21]

G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun., 19 (2010), pp. 3256-3258, doi: 10.1039/B922733D.

[22]

J. Zhou, X. Gao, R. Liu, Z. Xie, J. Yang, S. Zhang, G. Zhang, H. Liu, Y. Li, J. Zhang, Z. Liu, Synthesis of graphdiyne nanowalls using acetylenic coupling reaction, J. Am. Chem. Soc., 24 (2015), pp. 7596-7599, doi: 10.1021/jacs.5b04057.

[23]

Z. Zheng, L. Qi, X. Luan, S. Zhao, Y. Xue, Y. Li, Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne, Nat. Commun., 1 (2024), p. 7331, doi: 10.1038/s41467-024-51687-x.

[24]

Y. Gao, Y. Xue, H. Wu, S. Chen, X. Zheng, C. Xing, Y. Li, Self-organized gradually single-atom-layer of metal osmium for an unprecedented hydrogen production from seawater, J. Am. Chem. Soc., 15 (2024), pp. 10573-10580, doi: 10.1021/jacs.4c00027.

[25]

Y. Gao, Y. Xue, S. Chen, Y. Zheng, S. Chen, X. Zheng, F. He, C. Huang, Y. Li, Confined growth of highly ordered metal atomic arrays for seawater oxidation, Angew. Chem., Int. Ed., 35 (2024), e202406043, doi: 10.1002/anie.202406043.

[26]

X. Zheng, H. Wu, Y. Gao, S. Chen, Y. Xue, Y. Li, Controllable assembly of highly oxidized cobalt on graphdiyne surface for efficient conversion of nitrogen into nitric acid, Angew. Chem., Int. Ed., 9 (2024), e202316723, doi: 10.1002/anie.202316723.

[27]

X. Luan, L. Qi, Z. Zheng, Y. Gao, Y. Xue, Y. Li, Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries, Angew. Chem., Int. Ed., 8 (2023), e202215968, doi: 10.1002/anie.202215968.

[28]

S. Zhao, Z. Chen, Z. Zheng, X. Luan, Y. Gao, L. Qi, Y. Xue, Y. Li, A graphdiyne nanoreactor for conversion of NO3- to NH3 from wastewater, Adv. Funct. Mater., 51 (2023), 2308507, doi: 10.1002/adfm.202308507.

[29]

Z. Zheng, L. Qi, Y. Gao, X. Luan, Y. Xue, F. He, Y. Li, Ir0/graphdiyne atomic interface for selective epoxidation, Natl. Sci. Rev., 8 (2023), p. nwad156, doi: 10.1093/nsr/nwad156.

[30]

J. Hou, D. Wang, M. Chao, L. Zhang, H. Liu, Y. Zhao, A nitrogen-rich graphdiyne containing hexaazatrinaphthylene for high-performance lithium-ion batteries, Chem. Commun., 14 (2024), pp. 1908-1911, doi: 10.1039/D3CC05722D.

[31]

X. Fu, X. Zhao, T.B. Lu, M. Yuan, M. Wang, Graphdiyne-based single-atom catalysts with different coordination environments, Angew. Chem., Int. Ed., 16 (2023), e202219242, doi: 10.1002/anie.202219242.

[32]

J. Guo, R. Shi, R. Wang, Y. Wang, F. Zhang, C. Wang, H. Chen, C. Ma, Z. Wang, Y. Ge, Y. Song, Z. Luo, D. Fan, X. Jiang, J. Xu, H. Zhang, Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics, Laser Photonics Rev., 4 (2020), 1900367, doi: 10.1002/lpor.201900367.

[33]

L. Qi, Y. Gao, Y. Gao, Z. Zheng, X. Luan, S. Zhao, Z. Chen, H. Liu, Y. Xue, Y. Li, Controlled growth of metal atom arrays on graphdiyne for seawater oxidation, J. Am. Chem. Soc., 8 (2024), pp. 5669-5677, doi: 10.1021/jacs.3c14742.

[34]

T. Song, H. Liu, H. Zou, C. Wang, S. Shu, H. Dai, L. Duan, Metal-free wet chemistry for the fast gram-scale synthesis of γ-graphyne and its derivatives, Angew. Chem., Int. Ed., 63 (2024), e202411228, doi: 10.1002/anie.202411228.

[35]

Y. Gao, Y.R. Xue, H. Wu, S. Chen, X.C. Zheng, C.Y. Xing, Y.L. Li, Self-organized gradually single-atom-layer of metal osmium for an unprecedented hydrogen production from seawater, J. Am. Chem. Soc., 15 (2024), pp. 10573-10580, doi: 10.1021/jacs.4c00027.

[36]

X. Luan, L. Qi, Z. Zheng, S. Zhao, Y. Gao, Y. Xue, Y. Li, In situ growth of a GDY-MnOx heterointerface for selective and efficient ammonia production, Chem. Commun., 49 (2023), pp. 7611-7614, doi: 10.1039/D3CC01428B.

[37]

X. Luan, L. Qi, Z. Zheng, S. Zhao, H. Liu, R. Liu, Z. Chen, J. Yan, Y. Xue, Y. Li, Controllable growth of WO3@GDY heterointerface for efficient NH3 synthesis, Mater. Chem. Front., 22 (2023), pp. 5898-5904, doi: 10.1039/D3QM00734K.

[38]

Y. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, 2D graphdiyne: An emerging carbon material, Chem. Soc. Rev., 7 (2022), pp. 2681-2709, doi: 10.1039/D1CS00592H.

[39]

S. Zhao, Z. Zheng, L. Qi, Y. Xue, Y. Li, Controlled growth of donor-bridge-acceptor interface for high-performance ammonia production, Small, 13 (2022), 2107136, doi: 10.1002/smll.202107136.

[40]

Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Commun., 1 (2018), p. 1460, doi: 10.1038/s41467-018-03896-4.

[41]

S. Zhang, Y. Kong, Y. Gu, R. Bai, M. Li, S. Zhao, M. Ma, Z. Li, L. Zeng, D. Qiu, Q. Zhang, M. Luo, L. Gu, Y. Yu, S. Guo, J. Zhang, Strong d-π orbital coupling of Co-C4 atomic sites on graphdiyne boosts potassium-sulfur battery electrocatalysis, J. Am. Chem. Soc., 7 (2024), pp. 4433-4443, doi: 10.1021/jacs.3c09533.

[42]

K. Ma, J. Wu, X. Wang, Y. Sun, Z. Xiong, F. Dai, H. Bai, Y. Xie, Z. Kang, Y. Zhang, Periodically interrupting bonding behavior to reformat delocalized electronic states of graphdiyne for improved electrocatalytic hydrogen evolution, Angew. Chem., Int. Ed., 42 (2022), e202211094, doi: 10.1002/anie.202211094.

[43]

Y. Ma, Q. Yang, J. Qi, Y. Zhang, Y. Gao, Y. Zeng, N. Jiang, Y. Sun, K. Qu, W. Fang, Y. Li, X. Lu, C. Zhi, J. Qiu, Surface atom knockout for the active site exposure of alloy catalyst, Proc. Natl. Acad. Sci. U. S. A., 15 (2024), e2319525121, doi: 10.1073/pnas.2319525121.

[44]

J. Feijóo, Y. Yang, M.V. Fonseca Guzman, A. Vargas, C. Chen, C.J. Pollock, P. Yang, Operando high-energy-resolution X-ray spectroscopy of evolving Cu nanoparticle electrocatalysts for CO2 reduction, J. Am. Chem. Soc., 37 (2023), pp. 20208-20213, doi: 10.1021/jacs.3c08182.

[45]

Q. Lei, L. Huang, J. Yin, B. Davaasuren, Y. Yuan, X. Dong, Z.P. Wu, X. Wang, K.X. Yao, X. Lu, Y. Han, Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction, Nat. Commun., 1 (2022), p. 4857, doi: 10.1038/s41467-022-32601-9.

[46]

F. Bu, C. Chen, Y. Yu, W. Hao, S. Zhao, Y. Hu, Y. Qin, Boosting benzene oxidation with a spin-state-controlled nuclearity effect on iron sub-nanocatalysts, Angew. Chem., Int. Ed., 3 (2022), doi: 10.1002/anie.202216062.

AI Summary AI Mindmap
PDF (3149KB)

585

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/