Mechanism of interaction between TTR tetramer and Aβ42 oligomers: Dependence on the Aβ42 oligomeric size and morphology

Jinfei Mei , Wenqi Gao , Yvning Guan , Sajjad Ahmad , Fahad Nouman Muhammad , Hongqi Ai

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 187 -196.

PDF (4059KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 187 -196. DOI: 10.1016/j.chphma.2024.12.006
Research Article

Mechanism of interaction between TTR tetramer and Aβ42 oligomers: Dependence on the Aβ42 oligomeric size and morphology

Author information +
History +
PDF (4059KB)

Abstract

β-amyloid (Aβ) deposits are the leading cause of Alzheimer's disease. Many studies have confirmed that transthyretin (TTR) inhibits the cytotoxicity of Aβ oligomers (AβOs) with various species (oligomers and protofibrils, but not monomers) through their interactions. Here, we investigated the mechanisms of interactions between the TTR tetramer and various Aβ species, including two monomers with different morphologies and four oligomers with different molecular weights, by employing molecular dynamics simulations. From these results, we propose a clear interaction scenario: upon AβO binding, the dimer−dimer distance of TTR increases and the binding energy decreases, indicating an unfavorable effect on the TTR stability. Moreover, the larger the molecular weight (MW) of AβO, the greater the effect of interaction between the TTR tetramer and Aβ oligomer, and consequently the worse the TTR stability. In turn, Aβ-Aβ intermolecular distances in AβO grow and the hydrophobic solvent-accessible surface area (SASA) increases, whereas the number of intermolecular hydrogen bonds decreases, indicating AβO disaggregation induced by the TTR binding. Moreover, a trend is observed for the disaggregation to increase as the MW of the AβO species increases. Finally, we reveal that conformations rich in helical sections rather than the semi-extended conformation are favored upon binding with TTR. Overall, this study provides a comprehensive molecular-level insight to better understand the mechanism and principles of interaction between the TTR tetramer and AβOs.

Keywords

Transthyretin / Aβ oligomer / Mechanism of interaction / Molecular weight / Dependence

Cite this article

Download citation ▾
Jinfei Mei, Wenqi Gao, Yvning Guan, Sajjad Ahmad, Fahad Nouman Muhammad, Hongqi Ai. Mechanism of interaction between TTR tetramer and Aβ42 oligomers: Dependence on the Aβ42 oligomeric size and morphology. ChemPhysMater, 2025, 4(2): 187-196 DOI:10.1016/j.chphma.2024.12.006

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jinfei Mei: Writing - original draft, Validation, Investigation, Formal analysis, Data curation, Conceptualization. Wenqi Gao: Writing - original draft, Visualization, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Yvning Guan: Software, Methodology, Investigation. Sajjad Ahmad: Validation, Investigation. Fahad Nouman Muhammad: Visualization, Validation. Hongqi Ai: Writing - review & editing, Supervision, Resources, Project administration, Funding acquisition, Conceptualization.

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (ZR2022MB073) of China.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.chphma.2024.12.006. The docking structure of TTR-A 𝛽 42 systems; Overall and local magnification of key residues on the interfaces between TTR tetramer and A 𝛽 O; Helix content (%) of A 𝛽 monomer before and after MD.

References

[1]

J.F. Mei, H.J. Yang, B. Sun, C.Q. Liu, H.Q. Ai, Small-molecule targeted Aβ42 aggregate degradation: Negatively charged small molecules are more promising than the neutral ones, ACS Chem. Neurosci., 12 (2021), pp. 1197-1209.

[2]

P. Mangrolia, R.M. Murphy, Retinol-binding protein interferes with transthyretin-mediated β-amyloid aggregation inhibition, Biochemistry, 57 (2018), pp. 5029-5040.

[3]

Daoud , N,. Melkemi, T. Salah, S. Ghalem, Combined QSAR, molecular docking and molecular dynamics study on new acetylcholinesterase and butyrylcholinesterase inhibitors, Comput. Biol. Chem., 74 (2018), pp. 304-326.

[4]

J. Du, R.M. Murphy, Characterization of the interaction of β-amyloid with transthyretin monomers and tetramers, Biochemistry, 49 (2010), pp. 8276-8289.

[5]

D.T. Yang, G. Joshi, P.Y. Cho, J.A. Johnson, R.M. Murphy, Transthyretin as both a sensor and a scavenger of β-amyloid oligomers, Biochemistry, 52 (2013), pp. 2849-2861.

[6]

T.P.J. Knowles, M. Vendruscolo, C.M. Dobson, The amyloid state and its association with protein misfolding diseases, Nat. Rev. Mol. Cell Biol., 15 (2014), pp. 384-396.

[7]

D.J. Li, P.Y. Cho, D.T. Yang, R.M. Murphy, Identification of β-amyloid-binding sites on transthyretin, Protein. Eng. Des. Sel., 25 (2012), pp. 337-345.

[8]

D.M. Power, N.P. Elias, S.J. Richardson, J. Mendes, C.M. Soares, C.R.A. Santos, Evolution of the thyroid hormone-binding protein, Transthyretin. Gen. Comp. Endocrinol., 119 (2000), pp. 241-255.

[9]

J.A. Hamilton, M.D. Benson, Transthyretin: A review from a structural perspective, Cell. Mol. Life Sci., 58 (2001), pp. 1491-1521.

[10]

Wojtczak, V. Cody, J.R. Luft, W. Pangborn, Structure of rat transthyretin (rTTR) complex with thyroxine at 2.5 A resolution: First non-biased insight into thyroxine binding reveals different hormone orientation in two binding sites, Acta. Crystallogr. D. Biol. Crystallogr., 57 (2001), pp. 1061-1070.

[11]

J.P. Chanoine, S. Alex, S.L. Fang, S. Stone, J.L. Leonard, J. Körhle, L.E. Braverman, Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain, Endocrinology, 130 (1992), pp. 933-938.

[12]

L. Liu, R.M. Murphy, Kinetics of inhibition of beta-amyloid aggregation by transthyretin, Biochemistry, 45 (2006), pp. 15702-15709.

[13]

L. Saelices, L.M. Johnson, W.Y. Liang, M.R. Sawaya, D. Cascio, P. Ruchala, J. Whitelegge, L. Jiang, R. Riek, D.S. Eisenberg, Uncovering the mechanism of aggregation of human transthyretin, J. Biol. Chem., 290 (2015), pp. 28932-28943.

[14]

J.N. Buxbaum, J. Johansson, Transthyretin and BRICHOS: The paradox of amyloidogenic proteins with anti-amyloidogenic activity for Aβ in the central nervous system, Front. Neurosci., 11 (2017), p. 119.

[15]

J.W. Kelly, W. Colon, Z. Lai, H.A. Lashuel, J. McCulloch, S.L. McCutchen, G.J. Miroy, S.A. Peterson, Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid., in: F.M. Richards, D.S. Eisenberg, P.S. Kim (Eds.), Adv. Protein. Chem., Academic Press: 50 (1997) 161-181.

[16]

Y. Sekijima, Transthyretin (ATTR) amyloidosis: Clinical spectrum, molecular pathogenesis and disease-modifying treatments, J. Neurol. Neurosurg. Psychiatry., 86 (2015), pp. 1036-1043.

[17]

A.L. Schwarzman, L. Gregori, M.P. Vitek, S. Lyubski, W.J. Strittmatter, J.J. Enghilde, R. Bhasin, J. Silverman, K.H. Weisgraber, P.K. Coyle, Transthyretin equesters amyloid beta protein and prevents amyloid formation, Proc. Natl. Acad. Sci. U. S. A., 91 (1994), pp. 8368-8372.

[18]

L. Ciccone, C. Shi, D.d. Lorenzo, A.C.V. Baelen, N. Tonali, The positive side of the Alzheimer’s disease amyloid cross-interactions: The case of the Aβ 1-42 peptide with Tau, TTR, CysC, and ApoA1, Molecules., 25 (2020), p. 2439.

[19]

N. Zaręba, M. Kepinska, The function of transthyretin complexes with metallothionein in Alzheimer's disease, Int. J. Mol. Sci., 21 (2020), p. 9003.

[20]

J.N. Buxbaum, Z. Ye, N. Reixach, L. Friske, C. Levy, P. Das, T. Golde, E. Masliah, A.R. Roberts, T. Bartfai, Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of abeta toxicity, Proc. Natl. Acad. Sci. U. S. A., 105 (2008), pp. 2681-2686.

[21]

A.L. Schwarzman, L. Gregori, M.P. Vitek, S. Lyubski, W.J. Strittmatter, J.J. Enghilde, R. Bhasin, J. Silverman, K.H. Weisgraber, P.K. Coyle, Transthyretin sequesters amyloid beta protein and prevents amyloid formation, Proc. Natl. Acad. Sci. U. S. A., 91 (1994), pp. 8368-8372.

[22]

Schwarzman, D. Goldgaber, Interaction of transthyretin with amyloid β-protein: Binding and inhibition of amyloid formation, Ciba. Found. Symp., 199 (1996), pp. 146-160.

[23]

S.H. Choi, S.N. Leight, V.M.Y. Lee, T. Li, P.C. Wong, J.A. Johnson, M.J. Saraiva, S.S. Sisodia, Accelerated abeta deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (Transthyretin), J. Neurosci., 27 (2007), pp. 7006-7010.

[24]

S.M. Oliveira, C.A. Ribeiro, I. Cardoso, M.J. Saraiva, Gender-dependent transthyretin modulation of brain amyloid-β levels: Evidence from a mouse model of Alzheimer's disease, J. Alzheimers. Dis., 27 (2011), pp. 429-439.

[25]

B. Mazur-Kolecka, J. Frackowiak, H.M. Wiśniewski, Apolipoproteins E3 and E4 induce, and transthyretin prevents accumulation of the Alzheimer's β-Amyloid peptide in cultured vascular smooth muscle Cells, Brain. Res., 698 (1995), pp. 217-222.

[26]

S. Giunta, M.B. Valli, R. Galeazzi, P. Fattoretti, E.H. Corder, L. Galeazzi, Transthyretin inhibition of amyloid beta aggregation and toxicity, Clin. Biochem., 38 (2005), pp. 1112-1119.

[27]

R. Costa, A. Gonçalves, M.J. Saraiva, I. Cardoso, Transthyretin binding to A-beta peptide-impact on A-beta fibrillogenesis and toxicity, FEBS Lett., 582 (2008), pp. 936-942.

[28]

X. Li, E. Masliah, N. Reixach, J.N. Buxbaum, Neuronal production of transthyretin in human and murine Alzheimer's disease: Is it protective?, J. Neurosci., 31 (2011), pp. 12483-12490.

[29]

X. Li, X. Zhang, A.R.A. Ladiwala, D. Du, J.K. Yadav, P.M. Tessier, P.E. Wright, J.W. Kelly, J.N. Buxbaum, Mechanisms of transthyretin inhibition of β-amyloid aggregation in vitro, J. Neurosci., 33 (2013), pp. 19423-19433.

[30]

L. Liu, R.M. Murphy, Kinetics of inhibition of β-amyloid aggregation by transthyretin, Biochemistry, 45 (2006), pp. 15702-15709.

[31]

J.L. Du, R.M. Murphy, Characterization of the interaction of β-amyloid with transthyretin monomers and tetramers, Biochemistry, 49 (2010), pp. 8276-8289.

[32]

Gimeno, L.M. Santos, M. Alemi, J. Rivas, D. Blasi, E.Y. Cotrina, J. Llop, G. Valencia, I. Cardoso, J.R. Quintana, Insights on the interaction between transthyretin and Aβ in solution. A saturation transfer difference (STD) NMR analysis of the role of iododiflunisal, J. Med. Chem., 60 (2017), pp. 5749-5758.

[33]

L. Nilsson, A. Pamrén, T. Islam, K. Brännström, S.A. Golchin, N. Pettersson, I. Iakovleva, L. Sandblad, A.L. Gharibyan, A. Olofsson, Transthyretin interferes with Aβ amyloid formation by redirecting oligomeric nuclei into non-amyloid aggregates, J. Mol. Biol., 430 (2018), pp. 2722-2733.

[34]

R. Cascella, S. Conti, B. Mannini, X. Li, J.N. Buxbaum, B. Tiribilli, F. Chiti, C. Cecchi, Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro, Biochim. Biophys. Acta., 1832 (2013), pp. 2302-2314.

[35]

Wojtczak P. Neumann V. Cody, Structure of a new polymorphic monoclinic form of human transthyretin at 3 A resolution reveals a mixed complex between unliganded and T4-bound tetramers of TTR, Acta. Crystallogr. D. Biol. Crystallogr., 57 (2001), pp. 957-967.

[36]

Crescenzi, S. Tomaselli, R. Guerrini, S. Salvadori, A.M. D'Ursi, P.A. Temussi, D. Picone, Solution structure of the alzheimer amyloid β-peptide (1-42) in an apolar microenvironment, Eur. J. Biochem., 269 (2002), pp. 5642-5648.

[37]

J. Mei, W. Xu, W. Gao, C. Wang, Y. Guan, S. Ahmad, H. Ai, Identification and characterization of the conformation and size of amyloid-β (42) oligomers targeting the receptor LilrB2, Phys. Chem. Chem. Phys., 25 (2023), pp. 25229-25239.

[38]

K. Murakami, K. Irie, H. Ohigashi, H. Hara, M. Nagao, T. Shimizu, T. Shirasawa, Formation and stabilization model of the 42-mer Aβ radical:  Implications for the long-lasting oxidative stress in Alzheimer's disease, J. Am. Chem. Soc., 127 (2005), pp. 15168-15174.

[39]

J. Mei, C. Liu, H. Yang, X. Ma, H. Ai, Molecular mechanisms of direct and indirect interplay between amyloid β42 oligomer and characteristic lipids, ChemPhysMater, 1 (2022), pp. 310-320.

[40]

J. Mei, H. Yang, S. Ahmad, X. Ma, W. Xu, W. Gao, Y. Li, C. Wang, H. Ai, Toxicity mechanism of Aβ42 oligomer in the binding between the GABABR1a sushi1 domain and amyloid precursor protein 9mer: A mechanism like substitution reaction, ACS Chem. Neurosci., 13 (2022), pp. 2048-2059.

[41]

D. Kozakov, D.R. Hall, B. Xia, K.A. Porter, D. Padhorny, C. Yueh, D. Beglov, S. Vajda, The ClusPro web server for protein-protein docking, Nat. Protoc., 12 (2) (2017), pp. 255-278.

[42]

D. Kozakov, R. Brenke, S.R. Comeau, S. Vajda, PIPER: An FFT-based protein docking program with pairwise potentials, proteins, 65 (2006), pp. 392-406.

[43]

R.E. Rigsby, A.B. Parker, Using the PyMOL application to reinforce visual understanding of protein structure, Biochem. Mol. Biol. Edu., 44 (2016), pp. 433-437.

[44]

B.R. Brooks, C.L. Brooks, J.A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, CHARMM: The biomolecular simulation program, J. Comput. Chem., 30 (2009), pp. 1545-1614.

[45]

J. Lee, X. Cheng, J.M. Swails, M.S. Yeom, P.K. Eastman, J.A. Lemkul, S. Wei, J. Buckner, J.C. Jeong, Y. Qi, S. Jo, V.S. Pande, D.A. Case, C.L. Brooks, A.D. MacKerell, J.B. Klauda, W. Im, CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field, J. Chem. Theory Comput., 12 (2016), pp. 405-413.

[46]

W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79 (1983), pp. 926-935.

[47]

D.V.D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: Fast, flexible, and free, J. Comput., 26 (2005), pp. 1701-1718.

[48]

M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2 (2015), pp. 19-25.

[49]

J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B.L. de Groot, H. Grubmüller, A.D. MacKerell, CHARMM36m: An improved force field for folded and intrinsically disordered proteins, Nat. Met., 14 (2017), pp. 71-73.

[50]

W. Xu, J. Mei, C. Wang, H. Yang, X. Ma, W. Gao, S. Ahmad, H. Ai, Origin of stronger binding of ionic pair (IP) inhibitor to Aβ42 than the equimolar neutral counterparts: synergy mechanism of IP in disrupting Aβ42 protofibril and inhibiting Aβ42 aggregation under two pH conditions, Phys. Chem. Chem. Phys., 25 (2023), pp. 21612-21630.

[51]

M.Y. Lobanov, N.S. Bogatyreva, O.V. Galzitskaya, Radius of gyration as an indicator of protein structure compactness, Mol. Biol., 42 (2008), pp. 623-628.

[52]

V.M. Burger, D.J. Arenas, C.M. Stultz, A structure-free method for quantifying conformational flexibility in proteins, Sci. Rep., 6 (2016), p. 29040.

[53]

X. Li, X. Zhang, A. Ladiwala, D. Du, J.K. Yadav, P.M. Tessier, P.E. Wright, J.W. Kelly, J.N. Buxbaum, Mechanisms of transthyretin inhibition of β-amyloid aggregation in vitro, J. Neurosci., 33 (2013), pp. 19423-19433.

[54]

S. Zhou, H. Zou, Y. Wang, G.V. Lo, S. Yuan, Atomic mechanisms of transthyretin tetramer dissociation studied by molecular dynamics simulations, J. Chem. Inf. Model., 62 (2022), pp. 6667-6678.

[55]

M. Ahmed, J. Davis, D. Aucoin, T. Sato, S. Ahuja, S. Aimoto, J.I. Elliott, W.E.V. Nostrand, S.O. Smith, Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils, Nat. Struct. Mol. Biol., 17 (2010), pp. 561-567.

[56]

N. Blinov, M. Khorvash, D.S. Wishart, N.R. Cashman, A. Kovalenko, Initial structural models of the Aβ42 dimer from replica exchange molecular dynamics simulations, ACS Omega, 2 (2017), pp. 7621-7636.

AI Summary AI Mindmap
PDF (4059KB)

287

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/