A flexible self-powered humidity sensor with graphdiyne oxide

Jin Zhang , Weiqi Li , Cong Pan , Wenjie Ma , Ping Yu , Lanqun Mao

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 179 -186.

PDF (1957KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 179 -186. DOI: 10.1016/j.chphma.2024.12.005
Research Article

A flexible self-powered humidity sensor with graphdiyne oxide

Author information +
History +
PDF (1957KB)

Abstract

Humidity sensors are widely used in various fields of research. However, continuous power supplementation remains a significant challenge for further development. Harvesting energy directly from the ubiquitous atmospheric moisture to provide a sustainable water source is a promising strategy for developing self-powered systems. In this study, we developed a self-powered humidity sensor based on a flexible fabric substrate modified with graphdiyne oxide with a significant oxidation gradient. The device produces a high voltage of approximately 0.55 V with a 7.0 µA current through spontaneous adsorption of water molecules from the ambient atmosphere. At 100% relative humidity, the device exhibited long-term and cyclic output stabilities. Compared to other carbon materials, the low conductivity of graphdiyne enables an extremely high gradient of oxidation through moisture-electric field annealing polarization. Additionally, the large water uptake of graphdiyne oxide enhanced the sensing performance of the self-powered humidity sensor. This study demonstrates the significant potential of graphdiyne oxide in self-powered sensing applications.

Keywords

Graphdiyne oxide / Self-powered humidity sensor / Flexibility / Moisture-electric field annealing process

Cite this article

Download citation ▾
Jin Zhang, Weiqi Li, Cong Pan, Wenjie Ma, Ping Yu, Lanqun Mao. A flexible self-powered humidity sensor with graphdiyne oxide. ChemPhysMater, 2025, 4(2): 179-186 DOI:10.1016/j.chphma.2024.12.005

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jin Zhang: Writing - original draft, Investigation, Formal analysis. Weiqi Li: Methodology, Investigation, Formal analysis, Conceptualization. Cong Pan: Writing - review & editing, Formal analysis. Wenjie Ma: Writing - review & editing, Funding acquisition, Formal analysis. Ping Yu: Writing - review & editing, Supervision, Funding acquisition, Conceptualization. Lanqun Mao: Writing - review & editing, Supervision, Funding acquisition.

Acknowledgements

This study was supported by the National Basic Research Program of China (Grant Nos. 2022YFA1204500 and 2022YFA1204503) and the National Natural Science Foundation of China (Grant Nos. 22134002 to L. M. and 22125406 to P. Y.).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.chphma.2024.12.005.

References

[1]

Y.A. Anisimov, R.W. Evitts, D.E. Cree, L.D. Wilson, Polyaniline/biopolymer composite systems for humidity sensor applications: A review, Polymers, 13 (2021), p. 2722.

[2]

C.A. Ku, C.K. Chung, Advances in humidity nanosensors and their application: Review, Sensors, 23 (2023), p. 2328.

[3]

C. Huang, M. Jiang, F. Liu, Recent progress on environmentally friendly humidity sensor: A mini review, ACS Appl. Electron. Mater., 5 (2023), pp. 4067-4079.

[4]

C. Lv, C. Hu, J. Luo, C. Liu, S. Liu, Y. Qiao, Z. Zhang, J. Song, Y. Shi, J. Cai, A. Watanabe, Recent advances in graphene-based humidity sensors, Nanomaterials, 9 (2019), p. 422.

[5]

J. Epeloa, C. Repetto, B. Gómez, L. Nachez, A. Dobry, Resistivity humidity sensors based on hydrogenated amorphous carbon films, Mater. Res. Express, 6 (2018), 025604.

[6]

Q. Chen, M. Nie, Y. Guo, Controlled synthesis and humidity sensing properties of CdS/polyaniline composite based on CdAl layered double hydroxide, Sens. Actuators B-Chem., 254 (2018), pp. 30-35.

[7]

M. Bhattacharjee, D. Bandyopadhyay, Mechanisms of humidity sensing on a CdS nanoparticle coated paper sensor, Sens. Actuators A-Phys., 285 (2019), pp. 241-247.

[8]

A. Tripathy, P. Sharma, S. Pramanik, F.S. Silva, N.A.B.A. Osman, Armalcolite nanocomposite: A new paradigm for flexible capacitive humidity sensor, IEEE Sens. J., 21 (2021), pp. 14685-14692.

[9]

J. Kim, J. Cho, H. Lee, S. Hong, Capacitive humidity sensor based on carbon black/polyimide composites, Sensors, 21 (2021), p. 1974.

[10]

K. Sharma, S. Islam, Optimization of porous anodic alumina nanostructure for ultra-high sensitive humidity sensor, Sens. Actuators B-Chem., 237 (2016), pp. 443-451.

[11]

X. Ding, J. Li, K. Tang, X. Chen, H. Li, A highly linear and sensitive QCM humidity sensor based on high-frequency quartz crystal transducer, IEEE Trans. Instrum. Meas., 73 (2024), pp. 1-9.

[12]

C. Sun, Q. Shi, M. Yazici, C. Lee, Y. Liu, Development of a highly sensitive humidity sensor based on a piezoelectric micromachined ultrasonic transducer array functionalized with graphene oxide thin film, Sensors, 18 (2018), p. 4352.

[13]

J. Yang, L. Feng, Y. Chen, L. Feng, J. Lu, L. Du, J. Guo, Z. Cheng, Z. Shi, L. Zhao, High-sensitivity and environmentally friendly humidity sensors deposited with recyclable green microspheres for wireless monitoring, ACS Appl. Mater. Interfaces, 14 (2022), pp. 15608-15622.

[14]

D. Zhang, Z. Xu, Z. Yang, X. Song, High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator, Nano Energy, 67 (2020), 104251.

[15]

Y. Jiang, K. Dong, X. Li, J. An, D. Wu, X. Peng, J. Yi, C. Ning, R. Cheng, P. Yu, Z. Wang, Stretchable, washable, and ultrathin triboelectric nanogenerators as skin-like highly sensitive self-powered haptic sensors, Adv. Funct. Mater., 31 (2021), 2005584.

[16]

Z. Xu, D. Zhang, X. Liu, Y. Yang, X. Wang, Q. Xue, Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor, Nano Energy, 94 (2022), 106881.

[17]

Y. Su, Y. Liu, W. Li, X. Xiao, C. Chen, H. Lu, Z. Yuan, H. Tai, Y. Jiang, J. Zou, G. Xie, J. Chen, Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring, Mater. Horiz., 10 (2023), pp. 842-851.

[18]

A.M.S. Zeeshan, S. Cho, Design and fabrication of a robust chitosan/polyvinyl alcohol-based humidity sensor energized by a piezoelectric generator, Energies, 15 (2022), p. 7609.

[19]

J. Dai, G. Xie, C. Chen, Y. Liu, H. Tai, Y. Jiang, Y. Su, Hierarchical piezoelectric composite film for self-powered moisture detection and wearable biomonitoring, Appl. Phys. Lett., 124 (2024), 053701.

[20]

H. Yu, H. Kim, T. Kim, K. Bae, S. Seo, J. Kim, T. Kang, Y. Kim, Self-powered humidity sensor based on graphene oxide composite film intercalated by poly (sodium 4-styrenesulfonate), ACS Appl. Mater. Interfaces, 6 (2014), pp. 8320-8326.

[21]

H. Xue, Q. Yang, D. Wang, W. Luo, W. Wang, M. Lin, D. Liang, Q. Luo, A wearable pyroelectric nanogenerator and self-powered breathing sensor, Nano Energy, 38 (2017), pp. 147-154.

[22]

K. Roy, S.K. Ghosh, A. Sultana, S. Garain, M. Xie, C.R. Bowen, K. Henkel, D. Schmeiβer, D. Mandal, A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers, ACS Appl. Nano Mater., 2 (2019), pp. 2013-2025.

[23]

F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture, Adv. Mater., 27 (2015), pp. 4351-4357.

[24]

D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu, B. Zhao, L. Liu, W.W. Duley, Y. Zhou, Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent voltage generation, ACS Appl. Mater. Interfaces, 11 (2019), pp. 14249-14255.

[25]

T. Delipinar, A. Shafique, M.S. Gohar, M.K. Yapici, Fabrication and materials integration of flexible humidity sensors for emerging applications, ACS Omega, 6 (2021), pp. 8744-8753.

[26]

F. Zhao, L. Wang, Y. Zhao, L. Qu, L. Dai, Graphene oxide nanoribbon assembly toward moisture-powered information storage, Adv. Mater., 29 (2017), 1604972.

[27]

H. Zhong, J. Xia, F. Wang, H. Chen, H. Wu, S. Lin, Graphene-piezoelectric material heterostructure for harvesting energy from water flow, Adv. Funct. Mater., 27 (2017), 1604226.

[28]

C. Yang, H. Wang, J. Yang, H. Yao, T. He, J. Bai, T. Guang, H. Cheng, J. Yan, L. Qu, A machine-learning-enhanced simultaneous and multimodal sensor based on moist-electric powered graphene oxide, Adv. Mater., 34 (2022), 2205249.

[29]

H. Wang, T. He, X. Hao, Y. Huang, H. Yao, F. Liu, H. Cheng, L. Qu, Moisture adsorption-desorption full cycle power generation, Nat. Commun., 13 (2022), p. 2524.

[30]

Y. Huang, H. Cheng, G. Shi, L. Qu, Highly efficient moisture-triggered nanogenerator based on graphene quantum dots, ACS Appl. Mater. Interfaces, 9 (2017), pp. 38170-38175.

[31]

J. Xue, F. Zhao, C. Hu, Y. Zhao, H. Luo, L. Dai, L. Qu, Vapor-activated power generation on conductive polymer, Adv. Funct. Mater., 26 (2016), pp. 8784-8792.

[32]

Y. Huang, H. Cheng, C. Yang, P. Zhang, Q. Liao, H. Yao, G. Shi, L. Qu, Interface-mediated hygroelectric generator with an output voltage approaching 1.5 Vs, Nat. Commun., 9 (2018), p. 4166.

[33]

T. Xu, X. Ding, C. Shao, L. Song, T. Lin, X. Gao, J. Xue, Z. Zhang, L. Qu, Electric power generation through the direct interaction of pristine graphene-oxide with water molecules, Small, 14 (2018), 1704473.

[34]

H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi, L. Jiang, Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel, Nano Energy, 45 (2018), pp. 37-43.

[35]

C. Shao, J. Gao, T. Xu, B. Ji, Y. Xiao, C. Gao, Y. Zhao, L. Qu, Wearable fiberform hygroelectric generator, Nano Energy, 53 (2018), pp. 698-705.

[36]

Y. Liang, F. Zhao, Z. Cheng, Y. Deng, Y. Xiao, H. Cheng, P. Zhang, Y. Huang, H. Shao, L. Qu, Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics, Energy Environ. Sci., 11 (2018), pp. 1730-1735.

[37]

G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun., 46 (2010), pp. 3256-3258.

[38]

C. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, Y. Li, Progress in research into 2D graphdiyne-based materials, Chem. Rev., 118 (2018), pp. 7744-7803.

[39]

X. Zheng, S. Chen, J. Li, H. Wu, C. Zhang, D. Zhang, Xi Chen, Y. Gao, F. He, L. Hui, H. Liu, T. Jiu, N. Wang, G. Li, J. Xu, Y. Xue, C. Huang, C. Chen, Y. Guo, T. Lu, D. Wang, L. Mao, J. Zhang, Y. Zhang, L. Chi, W. Guo, X. Bu, H. Zhang, L. Dai, Y. Zhao, Y. Li, Two-dimensional carbon graphdiyne: Advances in fundamental and application research, ACS Nano, 17 (2023), pp. 14309-14346.

[40]

X. Gao, H. Liu, D. Wang, J. Zhang, Graphdiyne: Synthesis, properties, and applications, Chem. Soc. Rev., 48 (2019), pp. 908-936.

[41]

Y. Fang, Y. Xue, L. Hui, H. Yu, Y. Li, Graphdiyne@Janus magnetite for photocatalytic nitrogen fixation, Angew. Chem. Int. Ed., 133 (2021), pp. 3207-3211.

[42]

X. Zheng, Y. Xue, C. Zhang, Y. Li, Controlled growth of multidimensional interface for high-selectivity ammonia production, CCS Chem., 5 (2023), pp. 1653-1662.

[43]

D. Zhang, Y. Xue, X. Zheng, C. Zhang, Y. Li, Multi-heterointerfaces for selective and efficient urea production, Natl. Sci. Rev., 10 (2023), p. nwac209.

[44]

F. He, Y. Li, Advances on theory and experiments of the energy applications in graphdiyne, CCS Chem., 5 (2023), pp. 72-94.

[45]

Y. Gao, Y. Xue, F. He, Y. Li, Controlled growth of a high selectivity interface for seawater electrolysis, Proc. Natl. Acad. Sci. U.S.A., 119 (2022), e2206946119.

[46]

Y. Gao, Y. Xue, L. Qi, C. Xing, X. Zheng, F. He, Y. Li, Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water, Nat. Commun., 13 (2022), p. 5227.

[47]

J. Liu, C. Chen, Y. Zhao, Progress and prospects of graphdiyne-based materials in biomedical applications, Adv. Mater., 31 (2019), 1804386.

[48]

J. Li, X. Han, D. Wang, L. Zhu, M.H. Ha-Thi, T. Pino, J. Arbiol, L. Wu, M.N. Ghazzal, A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed CuO nanoparticles, Angew. Chem. Int. Ed., 61 (2022), e202210242.

[49]

W. Li, C. Xu, T. Xiong, Y. Jiang, W. Ma, P. Yu, L. Mao, Giant water uptake enabled ultrahigh proton conductivity of graphdiyne oxide, Angew. Chem. Int. Ed., 135 (2023), e202216530.

[50]

H. Yan, S. Guo, F. Wu, P. Yu, H. Liu, Y. Li, L. Mao, Carbon atom hybridization matters: Ultrafast humidity response of graphdiyne oxides, Angew. Chem. Int. Ed., 57 (2018), pp. 3922-3926.

[51]

W. Ma, Y. Xue, S. Guo, Y. Jiang, F. Wu, P. Yu, L. Mao, Graphdiyne oxide: A new carbon nanozyme, Chem. Commun., 56 (2020), pp. 5115-5118.

[52]

D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010), pp. 4806-4814.

[53]

Z. Jin, L. Zhang, G. Wang, Y. Li, Y. Wang, Graphdiyne formed a novel CuI-GD/gC3N4S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution, Sustain. Energy Fuels, 4 (2020), pp. 5088-5101.

[54]

H. Yu, Y. Xue, L. Hui, C. Zhang, Y. Zhao, Z. Li, Y. Li, Controlled growth of MoS2 nanosheets on 2D N-doped graphdiyne nanolayers for highly associated effects on water reduction, Adv. Funct. Mater., 28 (2018), 1707564.

[55]

A. Han, Wen. Chen, S. Zhang, M. Zhang, Y. Han, J. Zhang, S. Ji, L. Zheng, Y. Wang, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li, A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts, Adv. Mater., 30 (2018), 1706508.

[56]

G. Hu, J. He, Y. Li, Controllable synthesis of two-dimensional graphdiyne films catalyzed by a copper (II) trichloro complex, ACS Catal., 12 (2022), pp. 6712-6721.

[57]

M. Gan, J. Huang, X. Li, M. Li, Z. Zhang, Z. Yang, C. Zhang, P. Yang, X. Gan, C. Lu, X. Yang, L. Fei, C. Huang, Incomplete charge transfer bestows significant sintering resistance for metal nanoparticles on two-dimensional graphyne, J. Mater. Chem. A, 12 (2024), pp. 29174-29183.

[58]

X. Wei, T. Zhao, Y. Yang, M. Shi, J. Wang, Z. Jin, N. Chen, Design of moisture-enabled electric generators utilizing sp-and sp2-hybridized two-dimensional carbon materials: A minireview and perspectives, Energy Fuels, 38 (2024), pp. 20242-20257.

AI Summary AI Mindmap
PDF (1957KB)

486

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/