Selective growth of graphdiyne-based vanadium-iridium oxide interfaces for efficient alkaline oxygen evolution reaction

Yunhao Zheng , Yurui Xue , Yang Gao , Siao Chen , Siyi Chen , Yuliang Li

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 124 -130.

PDF (4651KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 124 -130. DOI: 10.1016/j.chphma.2024.12.003
Research Article

Selective growth of graphdiyne-based vanadium-iridium oxide interfaces for efficient alkaline oxygen evolution reaction

Author information +
History +
PDF (4651KB)

Abstract

Electrocatalytic water splitting is a green and sustainable solution for hydrogen production, but its overall performance is still limited by the sluggish and inefficient oxygen evolution reaction (OER). Here, we report the controlled growth of vanadium-iridium oxides (VIrOx) on the surface of graphdiyne (GDY) to generate well-defined interfaces between GDY and VIrOx. The scanning electron microscopy and high-resolution transmission electron microscopy images showed the successful growth and uniform distribution of VIrOx quantum dots on the surface of the GDY nanosheets. The X-ray photoelectron spectra revealed that efficient charge transfer occurred at the interfaces between GDY and VIrOx quantum dots and led to the formation of mixed-valence metal species. These catalyst advantages notably increased the number of active sites and improved the overall intrinsic activity of the system, resulting in excellent electrocatalytic OER performance with a low overpotential of 121 mV at 10 mA cm−2, high turnover frequency of 0.914 s−1 at 300 mV, and long-term stability (100 h at 100 mA cm-2) in alkaline electrolytes.

Keywords

Graphdiyne / Carbon materials / Water splitting / Electrocatalysis / Oxygen evolution reaction

Cite this article

Download citation ▾
Yunhao Zheng, Yurui Xue, Yang Gao, Siao Chen, Siyi Chen, Yuliang Li. Selective growth of graphdiyne-based vanadium-iridium oxide interfaces for efficient alkaline oxygen evolution reaction. ChemPhysMater, 2025, 4(2): 124-130 DOI:10.1016/j.chphma.2024.12.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

Yuliang Li is the Editor-in-Chief for ChemPhysMater and the guest editor for the special issue on “Fundament and Application of 2D Graphdiyne”, and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Yunhao Zheng: Writing - original draft, Investigation, Formal analysis, Data curation. Yurui Xue: Writing - review & editing, Supervision, Methodology, Investigation, Formal analysis. Yang Gao: Formal analysis. Siao Chen: Formal analysis. Siyi Chen: Formal analysis. Yuliang Li: Writing - review & editing, Supervision, Funding acquisition, Formal analysis, Conceptualization.

Acknowledgements

This work was supported by the Basic Science Center Project of the National Natural Science Foundation of China (22388101), the National Key Research and Development Project of China (2022YFA1204500, 2022YFA1204501, 2022YFA1204503, 2018YFA0703501), and the Key Program of the Chinese Academy of Sciences (XDPB13).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.chphma.2024.12.003.

References

[1]

S. Lee, Y.J. Lee, G. Lee, A. Soon, Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction, Nat. Commun., 13 (2022), p. 3171, doi: 10.1038/s41467-022-30838-y.

[2]

J.J. Velasco Vélez, D. Bernsmeier, R.V. Mom, P. Zeller, Y. Shao-Horn, B. Roldan Cuenya, A. Knop-Gericke, R. Schlögl, T.E. Jones, Iridium oxide coordinatively unsaturated active sites govern the electrocatalytic oxidation of water, Adv. Energy Mater., 14 (2024), 2303407, doi: 10.1002/aenm.202303407.

[3]

L. Wang, R. Du, X. Liang, Y. Zou, X. Zhao, H. Chen, X. Zou, Optimizing edge active sites via intrinsic in-plane iridium deficiency in layered iridium oxides for oxygen evolution electrocatalysis, Adv. Mater., 16 (2024), 2312608, doi: 10.1002/adma.202312608.

[4]

S.B. Roy, S. Moon, K. Hee kim, A. Patil, M.A. Rehman, S. Yoo, Y. Seo, J.H. Park, K. Kang, S.C. Jun, Tuning the band (p and d) center and enhancing the active sites by nitrogen(N) doping on iridium diphosphide (IrP2) for accelerating pH-universal water electrolysis, Appl. Catal. B, 319 (2022), 121906, doi: 10.1016/j.apcatb.2022.121906.

[5]

J.A. Esterhuizen, A. Mathur, B.R. Goldsmith, S. Linic, High-performance iridium-molybdenum oxide electrocatalysts for water oxidation in acid: Bayesian optimization discovery and experimental testing, J. Am. Chem. Soc., 8 (2024), pp. 5511-5522, doi: 10.1021/jacs.3c13491.

[6]

H. Ding, C. Su, J. Wu, H. Lv, Y. Tan, X. Tai, W. Wang, T. Zhou, Y. Lin, W. Chu, X. Wu, Y. Xie, C. Wu, Highly crystalline iridium-nickel nanocages with subnanopores for acidic bifunctional water splitting electrolysis, J. Am. Chem. Soc., 11 (2024), pp. 7858-7867, doi: 10.1021/jacs.4c01379.

[7]

X. Xiong, J. Tang, Y. Ji, W. Xue, H. Wang, C. Liu, H. Zeng, Y. Dai, H.J. Peng, T. Zheng, C. Xia, X. Liu, Q. Jiang, High-efficiency iridium-yttrium alloy catalyst for acidic water electrolysis, Adv. Energy Mater., 20 (2024), 2304479, doi: 10.1002/aenm.202304479.

[8]

G.R. Lee, J. Kim, D. Hong, Y.J. Kim, H. Jang, H.J. Han, C.K. Hwang, D. Kim, J.Y. Kim, Y.S. Jung, Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts, Nat. Commun., 1 (2023), p. 5402, doi: 10.1038/s41467-022-34464-6.

[9]

P. Ma, H. Cao, Q. Hao, R. Wang, W. Liu, M. Zuo, Jia C, Z. Zhang, J. Bao, Neighbouring synergy in high-density single Ir atoms on CoGaOOH for efficient alkaline electrocatalytic oxygen evolution, Angew. Chem. Int. Ed., 63 (2024), e202404418, doi: 10.1002/anie.202404418.

[10]

B. Wang, J. Li, D. Li, J. Xu, S. Liu, Q. Jiang, Y. Zhang, Z. Duan, F. Zhang, Single atom iridium decorated nickel alloys supported on segregated MoO2 for alkaline water electrolysis, Adv. Mater., 11 (2024), 2305437, doi: 10.1002/adma.202305437.

[11]

H. Luo, F. Lin, Q. Zhang, D. Wang, K. Wang, L. Gu, M. Luo, F. Lv, S. Guo, Atomic-layer IrOx enabling ligand effect boosts water oxidation electrocatalysis, J. Am. Chem. Soc., 28 (2024), pp. 19327-19336, doi: 10.1021/jacs.4c05165.

[12]

S. Kwon, K.A. Stoerzinger, R. Rao, L. Qiao, W.A. Goddard III, Y. Shao-Horn, Facet-dependent oxygen evolution reaction activity of IrO2 from quantum mechanics and experiments, J. Am. Chem. Soc., 17 (2024), pp. 11719-11725, doi: 10.1021/jacs.3c14271.

[13]

A. Li, S. Kong, K. Adachi, H. Ooka, K. Fushimi, Q. Jiang, H. Ofuchi, S. Hamamoto, M. Oura, K. Higashi, T. Kaneko, T. Uruga, N. Kawamura, Hashizume D, R. Nakamura, Atomically dispersed hexavalent iridium oxide from MnO2 reduction for oxygen evolution catalysis, Science, 6696 (2024), pp. 666-670, doi: 10.1126/science.adg5193.

[14]

S. Liu, H. Tan, Y.C. Huang, Q. Zhang, H. Lin, L. Li, Hu Z, W.H. Huang, C.W. Pao, J.F. Lee, Q. Kong, Q. Shao, Y. Xu, X. Huang, Structurally-distorted RuIr-based nanoframes for long-duration oxygen evolution catalysis, Adv. Mater., 42 (2023), 2305659, doi: 10.1002/adma.202305659.

[15]

L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H.Y. Hwang, J.K. Norskov, T.F. Jaramillo, A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction, Science, 6303 (2016), pp. 1011-1014, doi: 10.1126/science.aaf5050.

[16]

Y. Du, F. Xie, M. Lu, R. Lv, W. Liu, Y. Yan, S. Yan, Z. Zou, Continuous strain tuning of oxygen evolution catalysts with anisotropic thermal expansion, Nat. Commun., 15 (2024), p. 1780, doi: 10.1038/s41467-023-43650-z.

[17]

F. Liao, K. Yin, Y. Ji, W. Zhu, Z. Fan, Y. Li, J. Zhong, M. Shao, Z. Kang, Q. Shao, Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution, Nat. Commun., 14 (2023), p. 1248, doi: 10.1038/s41467-023-36833-1.

[18]

L. Qi, Y. Gao, Y. Gao, Z. Zheng, X. Luan, S. Zhao, Z. Chen, H. Liu, Y. Xue, Y. Li, Controlled growth of metal atom arrays on graphdiyne for seawater oxidation, J. Am. Chem. Soc., 8 (2024), pp. 5669-5677, doi: 10.1021/jacs.3c14742.

[19]

T.B.N. Huynh, J. Song, H.E. Bae, Y. Kim, M.D. Dickey, Y.E. Sung, M.J. Kim, O.J. Kwon, Ir-Ru electrocatalysts embedded in N-doped carbon matrix for proton exchange membrane water electrolysis, Adv. Funct. Mater., 28 (2023), 2301999, doi: 10.1002/adfm.202301999.

[20]

X. Shao, M. Liang, M.G. Kim, S. Ajmal, A. Kumar, X. Liu, H.S. Jung, H. Jin, F. Cao, J. Yu, K.M. Tran, H. Ko, J. Lee, J.W. Bae, H. Lee, Density-controlled metal nanocluster with modulated surface for pH-universal and robust water splitting, Adv. Funct. Mater., 12 (2023), 2211192, doi: 10.1002/adfm.202211192.

[21]

X. Wang, Z. Qin, J. Qian, L. Chen, K. Shen, IrCo nanoparticles encapsulated with carbon nanotubes for efficient and stable acidic water splitting, ACS Catal., 16 (2023), pp. 10672-10682, doi: 10.1021/acscatal.3c02887.

[22]

Y. Gao, Y. Xue, F. He, Y. Li, Controlled growth of a high selectivity interface for seawater electrolysis, Proc. Natl. Acad. Sci. U.S.A., 36 (2022), e2206946119, doi: 10.1073/pnas.2206946119.

[23]

Y. Gao, Y. Xue, H. Wu, S. Chen, X. Zheng, C. Xing, Y. Li, Self-organized gradually single-atom-layer of metal osmium for an unprecedented hydrogen production from seawater, J. Am. Chem. Soc., 15 (2024), pp. 10573-10580, doi: 10.1021/jacs.4c00027.

[24]

R. Andaveh, A. Sabour Rouhaghdam, J. Ai, M. Maleki, K. Wang, A. Seif, G. Barati Darband, J. Li, Boosting the electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured electrocatalyst for large-current-density alkaline seawater splitting, Appl. Catal. B: Environ., 325 (2023), 122355, doi: 10.1016/j.apcatb.2022.122355.

[25]

B. Fang, J. Jin, Y. Li, H. Dang, M. Shao, L. Zhao, N. Yin, W. Wang, Interfacial electronic modulation of Mo5N6/Ni3S2 heterojunction array boosts electrocatalytic alkaline overall water splitting, Small, 29 (2024), 2310825, doi: 10.1002/smll.202310825.

[26]

H. Guo, Y. Yang, G. Yang, X. Cao, N. Yan, Z. Li, E. Chen, L. Tang, M. Peng, L. Shi, S. Xie, H. Tao, C. Xu, Y. Zhu, X. Fu, Y. Pan, N. Chen, J. Lin, X. Tu, Z. Shao, Y. Sun, Ex situ reconstruction-shaped Ir/CoO/perovskite heterojunction for boosted water oxidation reaction, ACS Catal., 7 (2023), pp. 5007-5019, doi: 10.1021/acscatal.2c05684.

[27]

L. He, N. Wang, M. Xiang, L. Zhong, S. Komarneni, W. Hu, S-vacancy-rich NiFe-S nanosheets based on a fully electrochemical strategy for large-scale and quasi-industrial OER catalysts, Appl. Catal. B: Environ. Energy, 345 (2024), 123686, doi: 10.1016/j.apcatb.2023.123686.

[28]

P. Kumar, K. Kannimuthu, A.S. Zeraati, S. Roy, X. Wang, X. Wang, S. Samanta, K.A. Miller, M. Molina, D. Trivedi, J. Abed, M.A. Campos Mata, H. Al-Mahayni, J. Baltrusaitis, G. Shimizu, Y.A. Wu, A. Seifitokaldani, E.H. Sargent, P.M. Ajayan, J. Hu, M.G. Kibria, High-sensity cobalt single-atom catalysts for enhanced oxygen evolution reaction, J. Am. Chem. Soc., 14 (2023), pp. 8052-8063, doi: 10.1021/jacs.3c00537.

[29]

Y.J. Lee, S.K. Park, Metal-organic framework-derived hollow CoS nanoarray coupled with NiFe layered double hydroxides as efficient bifunctional electrocatalyst for overall water splitting, Small, 16 (2022), 2200586, doi: 10.1002/smll.202200586.

[30]

M. Li, H.J. Niu, Y. Li, J. Liu, X. Yang, Y. Lv, K. Chen, W. Zhou, Synergetic regulation of CeO2 modification and (W2O7)2- intercalation on NiFe-LDH for high-performance large-current seawater electrooxidation, Appl. Catal. B: Environ., 330 (2023), 122612, doi: 10.1016/j.apcatb.2023.122612.

[31]

X. Lin, S. Cao, X. Chen, H. Chen, Z. Wang, H. Liu, H. Xu, S. Liu, S. Wei, X. Lu, Two birds with one stone: Contemporaneously boosting OER activity and kinetics for layered double hydroxide inspired by photosystem II, Adv. Funct. Mater., 27 (2022), 2202072, doi: 10.1002/adfm.202202072.

[32]

X. Liu, Q. Yu, X. Qu, X. Wang, J. Chi, L. Wang, Manipulating electron redistribution in Ni2P for enhanced alkaline seawater electrolysis, Adv. Mater., 1 (2024), 2307395, doi: 10.1002/adma.202307395.

[33]

J.H. Park, H.J. Kwon, D.Y. Lee, S.J. Suh, Effect of Ni sulfate residue on oxygen evolution reaction (OER) in porous NiFe@NiFe layered double hydroxide, Small, 20 (2024), 2400046, doi: 10.1002/smll.202400046.

[34]

W. Shi, J. Zhu, L. Gong, D. Feng, Q. Ma, J. Yu, H. Tang, Y. Zhao, S. Mu, Fe-incorporated Ni/MoO2 hollow heterostructure nanorod arrays for high-efficiency overall water splitting in alkaline and seawater media, Small, 52 (2022), 2205683, doi: 10.1002/smll.202205683.

[35]

L. Tan, J. Yu, C. Wang, H. Wang, X. Liu, H. Gao, L. Xin, D. Liu, W. Hou, T. Zhan, Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation, Adv. Funct. Mater., 29 (2022), 2200951, doi: 10.1002/adfm.202200951.

[36]

H. Yang, G. Vijaykumar, Z. Chen, J.N. Hausmann, I. Mondal, S. Ghosh, V.C.J. Nicolaus, K. Laun, I. Zebger, M. Driess, P.W. Menezes, In situ reconstruction of helical Iron borophosphate precatalyst toward durable industrial alkaline water electrolysis and selective oxidation of alcohols, Adv. Funct. Mater., 41 (2023), 2303702, doi: 10.1002/adfm.202303702.

[37]

N. Yang, S. Tian, Y. Feng, Z. Hu, H. Liu, X. Tian, L. Xu, C. Hu, J. Yang, Introducing high-valence iridium single atoms into bimetal phosphides toward high-efficiency oxygen evolution and overall water splitting, Small, 15 (2023), 2207253, doi: 10.1002/smll.202207253.

[38]

Y. Yang, S. Wei, Y. Li, D. Guo, H. Liu, L. Liu, Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution, Appl. Catal. B: Environ., 314 (2022), 121491, doi: 10.1016/j.apcatb.2022.121491.

[39]

K. Yeom, J. Jo, H. Shin, H. Ji, S. Moon, J.E. Park, S. Lee, J. Shim, D.H. Mok, M.S. Bootharaju, S. Back, T. Hyeon, Y.E. Sung, Unraveling surface reconstruction during oxygen evolution reaction on the defined spinel oxide surface, Adv. Funct. Mater., 34 (2024), 2401095, doi: 10.1002/adfm.202401095.

[40]

B. Zhang, Y. Luo, D. Xiang, J. Qin, K. Miao, X. Wang, X. Kang, Y. Tian, Yolk-shell structured zinc-cobalt-ruthenium alloy oxide assembled with ultra-small nanoparticles: A superior cascade catalyst toward oxygen evolution reaction, Adv. Funct. Mater., 34 (2023), 2214529, doi: 10.1002/adfm.202214529.

[41]

Y. Zhang, R. Lu, C. Wang, Y. Zhao, L. Qi, Electronic and vacancy engineering of Mo-RuCoO nanoarrays for high-efficiency water splitting, Adv. Funct. Mater., 40 (2023), 2303073, doi: 10.1002/adfm.202303073.

[42]

F. Zhou, M. Gan, D. Yan, X. Chen, X. Peng, Hydrogen-rich pyrolysis from Ni-Fe heterometallic schiff base centrosymmetric cluster facilitates NiFe alloy for efficient OER electrocatalysts, Small, 24 (2023), 2208276, doi: 10.1002/smll.202208276.

[43]

P. Zhou, G. Hai, G. Zhao, R. Li, X. Huang, Y. Lu, G. Wang, CeO2 as an “electron pump” to boost the performance of Co4N in electrocatalytic hydrogen evolution, oxygen evolution and biomass oxidation valorization, Appl. Catal. B: Environmental, 325 (2023), 122364, doi: 10.1016/j.apcatb.2023.122364.

[44]

X. Zhou, Y. Mo, F. Yu, L. Liao, X. Yong, F. Zhang, D. Li, Q. Zhou, T. Sheng, H. Zhou, Engineering active iron sites on nanoporous bimetal phosphide/nitride heterostructure array enabling robust overall water splitting, Adv. Funct. Mater., 6 (2023), 2209465, doi: 10.1002/adfm.202209465.

AI Summary AI Mindmap
PDF (4651KB)

378

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/