Correlations between synthetic conditions and catalytic activity of LaMO3 perovskite-like oxide materials (M: Fe, Co, Ni): The key role of glycine

Petr Zemlianskii , Daniil Morozov , Gennady Kapustin , Nikolai Davshan , Konstantin Kalmykov , Vladimir Chernyshev , Alexander Kustov , Leonid Kustov

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 165 -178.

PDF (5572KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 165 -178. DOI: 10.1016/j.chphma.2024.12.002
Research Article

Correlations between synthetic conditions and catalytic activity of LaMO3 perovskite-like oxide materials (M: Fe, Co, Ni): The key role of glycine

Author information +
History +
PDF (5572KB)

Abstract

Herein N2O decomposition over LaMO3 (M: Fe, Co, Ni) mixed oxides with perovskite structures has been optimized. The influence of the organic additive and the additive to (La3+ + Co2+) molar ratio on phase composition, particle aggregate size, textural properties, and catalytic activity of LaCoO3 has been determined for the first time. Glycine improved the phase purity of LaCoO3, enhanced the specific surface area and pore volume, and shifted the pore size distribution to the wider mesopore and macropore regions. LaCoO3 showed better activity than LaFeO3 and LaNiO3 owing to the greater reducibility of Co3+ and its large specific surface area, and correlations between the La3+:Co2+ molar ratio, particle aggregate size, pore volume for pores larger than 25 nm, and N2O decomposition activity for LaCoO3 have been determined. Changes in the LaCoO3 textural properties following catalytic experiments with 10% water vapor added to the feed have also been analyzed here-in.

Keywords

N2O decomposition / LaCoO3 / Bulk perovskites / Glycine / Textural properties

Cite this article

Download citation ▾
Petr Zemlianskii, Daniil Morozov, Gennady Kapustin, Nikolai Davshan, Konstantin Kalmykov, Vladimir Chernyshev, Alexander Kustov, Leonid Kustov. Correlations between synthetic conditions and catalytic activity of LaMO3 perovskite-like oxide materials (M: Fe, Co, Ni): The key role of glycine. ChemPhysMater, 2025, 4(2): 165-178 DOI:10.1016/j.chphma.2024.12.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Petr Zemlianskii: Writing - original draft, Methodology, Investigation. Daniil Morozov: Formal analysis, Data curation. Gennady Kapustin: Validation. Nikolai Davshan: Software, Resources. Konstantin Kalmykov: Formal analysis, Data curation. Vladimir Chernyshev: Visualization. Alexander Kustov: Writing - original draft, Methodology. Leonid Kustov: Writing - review & editing, Supervision, Project administration, Funding acquisition, Conceptualization.

Acknowledgements

This research was supported by the Russian Science Foundation (Grant No. 23-73-30007).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.chphma.2024.12.002. Additional text (Text S1-S4) and figures (Fig. S1-S2) are provided in the Supporting Information.

References

[1]

T. Feng, Y. Sun, Y. Shi, J. Ma, C. Feng, Z. Chen, Air pollution control policies and impacts: A review, Renew. Sustain. Energy Rev., 191 (2024), 114071, doi: 10.1016/j.rser.2023.114071.

[2]

M. Fajardi, J. Morris, A. Gurgel, H. Herzog, N.M. Dowell, S. Paltsev, The economics of bioenergy with carbon capture and storage (BECCS) deployment in a 1.5 °C or 2 °C world, Glob. Environ. Change, 68 (2021), 102262, doi: 10.1016/j.gloenvcha.2021.102262.

[3]

M.G. Galloni, S. Campisi, A. Gervasini, S. Morandi, M. Manzoli, How hydroxyapatite governs surface Cu(II) and Fe(III) structuring: Effects in the N2O decomposition under highly oxidant atmosphere, Appl. Catal. A, 655 (2023), 119101, doi: 10.1016/j.apcata.2023.119101.

[4]

J. Pérez-Ramirez, F. Kapteijn, K. Schoffel, J.A. Moulijn, Formation and control of N2O in nitric acid production: Where do we stand today? Appl. Catal. B, 44 (2003), pp. 117-151, doi: 10.1016/S0926-3373(03)00026-2.

[5]

P. Granger, V.I. Parvulescu, Catalytic NOx abatement systems for mobile sources: From three-way to lean burn after-treatment technologies, Chem. Rev., 111 (2011), pp. 3155-3207, doi: 10.1021/cr100168g.

[6]

United Nations Environment Programme, Drawing down N2O to protect climate and the ozone layer:A UNEP synthesis report (2013).

[7]

F. Kapteijn, J. Rodriguez-Mirasol, J.A. Moulijn, Heterogeneous catalytic decomposition of nitrous oxide, Appl. Catal. B, 9 (1996), pp. 25-64, doi: 10.1016/0926-3373(96)90072-7.

[8]

G. Centi, F. Vazzana, Selective catalytic reduction of N2O in industrial emissions containing O2, H2O and SO2: Behavior of Fe/ZSM-5 catalysts, Catal. Today, 53 (1999), pp. 683-693, doi: 10.1016/S0920-5861(99)00155-8.

[9]

K.M. Nicholas, C. Lander, Y. Shao, Computational evaluation of potential molecular catalysts for nitrous oxide decomposition, Inorg. Chem., 61 (2022), pp. 14591-14605, doi: 10.1021/acs.inorgchem.2c01598.

[10]

M.C. Campa, D. Pietrogiacomi, C. Catracchia, S. Morpurgo, J. Olszowka, K. Mlekodaj, M. Lemishka, J. Dedecek, A. Kornas, E. Tabor, Fe-MOR and Fe-FER as catalysts for abatement of N2O with CH4: In situ UV-vis DRS and operando FTIR study, Appl. Catal. B, 342 (2024), 123360, doi: 10.1016/j.apcatb.2023.123360.

[11]

B. Kang, M. Li, Z. Di, X. Guo, Y. Wei, J. Jia, R. Zhang, Role of Al pairs on effective N2O decomposition over the ZSM-5 zeolite catalyst, Catal. Today, 402 (2022), pp. 17-26, doi: 10.1016/j.cattod.2022.01.018.

[12]

F. Lin, T. Andana, Y. Wu, J. Szanyi, Y. Wang, F. Gao, Catalytic site requirements for N2O decomposition on Cu-, Co-, and Fe-SSZ-13 zeolites, J. Catal., 401 (2021), pp. 70-80, doi: 10.1016/j.jcat.2021.07.012.

[13]

L.M. Kustov, S.F. Dunaev, A.L. Kustov, Nitrous oxide adsorption and decomposition on zeolites and zeolite-like materials, Molecules, 27 (2022), pp. 398-407, doi: 10.3390/molecules27020398.

[14]

A.A. Gainanova, G.M. Kuz'micheva, L.V. Pirutko, A.I. Zhukova, Q.K. Nguyen, A.G. Mushtakov, A.R. Alimguzina, E.B. Markova, L.M. Kustov, A.L. Kustov, Y.A. Fionov, R.D. Svetogorov, E.V. Khramov, A.V. Koroleva, New iron-containing MFI-type zeolites in the catalytic conversion of ethanol, propane, and N2O, J. Mater. Res., 38 (2023), pp. 532-546, doi: 10.1557/s43578-022-00840-7.

[15]

G. Kuz'micheva, V. Chernyshev, G. Kravchenko, L. Pirutko, E. Khramov, L. Bruk, Z. Pastukhova, A. Kustov, L. Kustov, E. Markova, Impact of composition and structural parameters on the catalytic activity of MFI type titanosilicalites, Dalton. Trans., 51 (2022), pp. 3439-3451, doi: 10.1039/D1DT04131B.

[16]

M.C. Campa, G. Fierro, A.M. Doyle, S. Tuti, C. Catracchia, D. Pietrogiacomi, Combined use of in situ and operando-FTIR, TPR and FESEM techniques to investigate the surface species along the simultaneous abatement of N2O and NO on Pt, Pd, Rh/TiO2-ZrO2 and Pt, Pd, Rh/TiO2-ZrO2-CeO2 catalysts, Surf. Interfaces, 42 (2023), 103502, doi: 10.1016/j.surfin.2023.103502.

[17]

M.C. Campa, A.M. Doyle, G. Fierro, D. Pietrogiacomi, Simultaneous abatement of NO and N2O with CH4 over modified Al2O3 supported Pt, Pd, Rh, Catal. Today, 384-386 (2022), pp. 76-87, doi: 10.1016/j.cattod.2021.06.020.

[18]

B. Bozorgi, J. Karimi-Sabet, P. Khadiv-Parsi, The removal of N2O from gas stream by catalytic decomposition over Pt-alkali metal/SiO2, Environ. Technol. Innovation, 26 (2022), 102344, doi: 10.1016/j.eti.2022.102344.

[19]

R. Li, Y. Li, Z. Liu, Recent advances in the catalytic removal of NOx and N2O over spinel oxide-based catalyst, Fuel, 355 (2024), 129405, doi: 10.1016/j.fuel.2023.129405.

[20]

E.M. Kostyukhin, A.L. Kustov, N.V. Evdokimenko, A.I. Bazlov, L.M. Kustov, Hydrothermal microwave-assisted synthesis of LaFeO3 catalyst for N2O decomposition, J. Am. Ceram. Soc., 104 (2021), pp. 492-503, doi: 10.1111/jace.17463.

[21]

L.M. Kustov, E.M. Kostyukhin, E. Yu Korneeva, A.L. Kustov, Microwave synthesis of nanosized iron-containing oxide particles and their physicochemical properties, Russ. Chem. Bull., 72 (2023), pp. 583-601, doi: 10.1007/s11172-023-3823-5.

[22]

C. Chen, Y. Cao, S. Liu, W. Jia, The effect of SO2 on NH3-SCO and SCR properties over Cu/SCR catalyst, Appl. Surf. Sci., 507 (2020), 145153, doi: 10.1016/j.apsusc.2019.145153.

[23]

G.E. Marnellos, E.A. Efthimiadis, I.A. Vasalos, Effect of SO2 and H2O on the N2O decomposition in the presence of O2 over Ru/Al2O3, Appl. Catal. B, 46 (2003), pp. 523-539, doi: 10.1016/S0926-3373(03)00292-3.

[24]

A. Garbujo, M. Pacella, M.M. Natile, M. Guiotto, J. Fabro, P. Canu, A. Glisenti, On A-doping strategy for tuning the TWC catalytic performance of perovskite based catalysts, Appl. Catal. A, 544 (2017), pp. 94-107, doi: 10.1016/j.apcata.2017.07.009.

[25]

N. Richards, L.A. Parker, J.H. Carter, S. Pattisson, D.J. Morgan, N.F. Dummer, S.E. Golunski, G.J. Hutchings, Effect of the preparation method of LaSrCoFeOx perovskites on the activity of N2O decomposition, Catal. Lett., 152 (2022), pp. 213-226, doi: 10.1007/s10562-021-03619-3.

[26]

D.V. Ivanov, L.G. Pinaeva, L.A. Isupova, A.N. Nadeev, I.P. Prosvirin, L.S. Dovlitova, Insights into the reactivity of La1-xSrxMnO3 (x = 0 ÷ 0.7) in high temperature N2O decomposition, Catal. Lett., 141 (2011), pp. 322-331, doi: 10.1007/s10562-010-0503-0.

[27]

D.V. Ivanov, L.G. Pinaeva, L.A. Isupova, E.M. Sadovskaya, I.P. Prosvirin, E.Yu. Gerasimov, I.S. Yakovleva, Effect of surface decoration with LaSrFeO4 on oxygen mobility and catalytic activity of La0.4Sr0.6FeO3-δ in high-temperature N2O decomposition, methane combustion and ammonia oxidation, Appl. Catal., A, 457 (2013), pp. 42-51, doi: 10.1016/j.apcata.2013.03.007.

[28]

T. Ishihara, M. Ando, K. Sada, K. Takiishi, K. Yamada, H. Nishiguchi, Y. Takita, Direct decomposition of NO into N2 and O2 over La(Ba)Mn(In)O3 perovskite oxide, J. Catal., 220 (2003), pp. 104-114, doi: 10.1016/S0021-9517(03)00265-3.

[29]

A.G. Margellou, T.C. Vaimakis, P.J. Pomonis, D.E. Petrakis, Catalytic N2O decomposition over La(Sr)FeO3 perovskites, React. Kinet., Mech. Catal., 127 (2019), pp. 825-838, doi: 10.1007/s11144-019-01608-7.

[30]

V.C. Belessi, C.N. Costa, T.V. Bakas, T. Anastasiadou, P.J. Pomonis, A.M. Efstathiou, Catalytic behavior of La-Sr-Ce-Fe-O mixed oxidic/perovskitic systems for the NO+CO and NO+CH4+O2 (lean-NOx) reactions, Catal. Today, 59 (2000), pp. 347-363, doi: 10.1016/S0920-5861(00)00300-X.

[31]

A.G. Margellou, T.C. Vaimakis, P.J. Pomonis, D.E. Petrakis, Investigation of catalytic reduction of NO by CO over A- and B- site substituted La(Sr)Fe(Co)O3 perovskites, Appl. Catal. A, 660 (2023), 119231, doi: 10.1016/j.apcata.2023.119231.

[32]

Y. Wu, X. Ni, A. Beaurain, C. Dujardin, P. Granger, Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants, Appl. Catal. B, 125 (2012), pp. 149-157, doi: 10.1016/j.apcatb.2012.05.033.

[33]

N. Russo, D. Mescia, D. Fino, G. Saracco, V. Specchia, N2O decomposition over perovskite catalysts, Ind. Eng. Chem. Res., 46 (2007), pp. 4226-4231, doi: 10.1021/ie0612008.

[34]

R.R. Kondakindi, K. Karan, B.A. Peppley, A simple and efficient preparation of LaFeO3 nanopowders by glycine-nitrate process: Effect of glycine concentration, Ceram. Int., 38 (2012), pp. 449-456, doi: 10.1016/j.ceramint.2011.07.026.

[35]

E. Mahmoudi, J. Mostafaei, C. Griesser, M.F. Bekheet, N. Delibas, S. Penner, E. Asghari, A. Coruh, A. Niaei, LaCoO3-BaCoO3 porous composites as efficient electrocatalyst for oxygen evolution reaction, Chem. Eng. J., 473 (2023), 144829, doi: 10.1016/j.cej.2023.144829.

[36]

A. Ashok, A. Kumar, R.R. Bhosale, F. Almomani, S.S. Malik, S. Suslov, F. Tarlochan, Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media, J. Electroanal. Chem., 809 (2018), pp. 22-30, doi: 10.1016/j.jelechem.2017.12.043.

[37]

E. Ghiasi, A. Malekzadeh, M. Ghiasi, Moderate concentration of citric acid for the formation of LaMnO3 and LaCoO3 nano-perovskites, J. Rare Earths, 31 (2013), pp. 997-1002, doi: 10.1016/S1002-0721(13)60020-4.

[38]

H. Sadabadi, S.R. Allahkaram, A. Kordijazi, O. Akbarzadeh, P.K. Rohatgi, Structural characterization of LaCoO3 perovskite nanoparticles synthesized by sol-gel autocombustion method, Eng. Rep., 3 (2021), p. e12335, doi: 10.1002/eng2.12335.

[39]

R. Hammami, H. Batis, Combustion synthesized crystalline La-Mn perovskite catalysts: Role of fuel molecule on thermal and chemical events, Arabian J. Chem., 13 (2020), pp. 683-693, doi: 10.1016/j.arabjc.2017.07.009.

[40]

The National Institute of Standards and Technology (NIST) is an Agency of the U.S. Commerce Department. Available online: accessed on 20 December 2023).

[41]

Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Preparation and characterization of LaNiO3 nanocrystals, Mater. Res. Bull., 41 (2006), pp. 1565-1570, doi: 10.1016/j.materresbull.2005.11.017.

[42]

L. Xue, C. Zhang, H. He, Y. Teraoka, Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst, Appl. Catal. B, 75 (2007), pp. 167-174, doi: 10.1016/j.apcatb.2007.04.013.

[43]

W. Piskorz, F. Zasada, P. Stelmachowski, A. Kotarba, Z. Sojka, DFT modeling of reaction mechanism and ab initio microkinetics of catalytic N2O decomposition over alkaline earth oxides: From molecular orbital picture account to simulation of transient and stationary rate profiles, J. Phys. Chem. C, 117 (2013), pp. 18488-18501, doi: 10.1021/jp405459g.

[44]

H. Zhou, Z. Huang, C. Sun, F. Qin, D. Xiong, W. Shen, H. Xu, Catalytic decomposition of N2O over CuxCe1-xOy mixed oxides, Appl. Catal. B, 125 (2012), pp. 492-498, doi: 10.1016/j.apcatb.2012.06.021.

[45]

G. Grzybek, P. Stelmachowski, S. Gudyka, P. Indyka, Z. Sojka, N. Guillén-Hurtado, V. Rico-Pérez, A. Bueno-López, A. Kotarba, Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: The role of the interface periphery, Appl. Catal. B, 180 (2016), pp. 622-629, doi: 10.1016/j.apcatb.2015.07.027.

[46]

W. Piskorz, F. Zasada, P. Stelmachowski, O. Diwald, A. Kotarba, Z. Sojka, Computational and experimental investigations into N2O decomposition over MgO nanocrystals from thorough molecular mechanism to ab initio microkinetics, J. Phys. Chem. C, 115 (2011), pp. 22451-22460, doi: 10.1021/jp2070826.

[47]

S. Xiong, J. Chen, N. Huang, S. Yang, Y. Peng, J. Li, Balance between reducibility and N2O adsorption capacity for the N2O decomposition: CuxCoy catalysts as an example, Environ. Sci. Technol., 53 (2019), pp. 10379-10386, doi: 10.1021/acs.est.9b02892.

[48]

J. Tapia-P, J. Gallego, J.F. Espinal, Calcination temperature effect in catalyst reactivity for the CO SELOX reaction using perovskitelike LaBO3 (B: mn, Fe, Co, Ni) oxides, Catal. Lett., 151 (2021), pp. 3690-3703, doi: 10.1007/s10562-021-03601-z.

[49]

H. Li, K. Yu, C. Wan, J. Zhu, X. Li, S. Tong, Y. Zhao, Comparison of the nickel addition patterns on the catalytic performances of LaCoO3 for low-temperature CO oxidation, Catal. Today, 281 (2017), pp. 534-541, doi: 10.1016/j.cattod.2016.05.027.

[50]

Y. Luo, K. Wang, J. Zuo, Q. Qian, Y. Xu, X. Liu, H. Xue, Q. Chen, Enhanced activity for total benzene oxidation over SBA-15 assisted electrospun LaCoO3, Mol. Catal., 436 (2017), pp. 259-266, doi: 10.1016/j.mcat.2017.04.030.

[51]

E. Muhumuza, P. Wu, T. Nan, L. Zhao, P. Bai, S. Mintova, Z. Yan, Perovskite-type LaCoO3 as an efficient and green catalyst for sustainable partial oxidation of cyclohexane, Ind. Eng. Chem. Res., 59 (2020), pp. 21322-21332, doi: 10.1021/acs.iecr.0c04095.

[52]

F. Ling, O.C. Anthony, Q. Xiong, M. Luo, X. Pan, L. Jia, J. Huang, D. Sun, Q. Li, PdO/LaCoO3 heterojunction photocatalysts for highly hydrogen production from formaldehyde aqueous solution under visible light, Int. J. Hydrogen Energy, 41 (2016), pp. 6115-6122, doi: 10.1016/j.ijhydene.2015.10.036.

[53]

Y. Wu, T. Yu, B.S. Dou, C.X. Wang, X.F. Xie, Z.L. Yu, S.R. Fan, Z.R. Fan, L.C. Wang, A comparative study on perovskite-type mixed oxide catalysts A′xA1-xBO3-λ (A′ = Ca, Sr, A = La, B = Mn, Fe, Co) for NH3 oxidation, J. Catal., 120 (1989), pp. 88-107, doi: 10.1016/0021-9517(89)90253-4.

[54]

F. Martinez-Ortega, C. Batiot-Dupeyrat, G. Valderrama, J.M. Tatibouët, Methane catalytic combustion on La-based perovskite catalysts, C. R. Acad. Sci. Ser. IIC: Chim., 4 (2001), pp. 49-55, doi: 10.1016/S1387-1609(00)01202-0.

[55]

Y. Cui, V. Galvita, L. Rihko-Struckmann, H. Lorenz, K. Sundmacher, Steam reforming of glycerol: The experimental activity of La1-xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium, Appl. Catal. B, 90 (2009), pp. 29-37, doi: 10.1016/j.apcatb.2009.02.006.

[56]

G.S. Gallego, F. Mondragón, J. Barrault, J.M. Tatibouët, C. Batiot-Dupeyrat, CO2 reforming of CH4 over La-Ni based perovskite precursors, Appl. Catal. A, 311 (2006), pp. 164-171, doi: 10.1016/j.apcata.2006.06.024.

[57]

G.S. Gallego, F. Mondragón, J.M. Tatibouët, J. Barrault, C. Batiot-Dupeyrat, Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor-Characterization of carbon deposition, Catal. Today, 133-135 (2008), pp. 200-209, doi: 10.1016/j.cattod.2007.12.075.

[58]

G. Wu, S. Li, C. Zhang, T. Wang, J. Gong, Glycerol steam reforming over perovskite-derived nickel-based catalysts, Appl. Catal. B, 144 (2014), pp. 277-285, doi: 10.1016/j.apcatb.2013.07.028.

[59]

M. Iwamoto, Y. Tanaka, N. Sawamura, S. Namba, Remarkable effect of pore size on the catalytic activity of mesoporous silica for the acetalization of cyclohexanone with methanol, J. Am. Chem. Soc., 125 (2003), pp. 13032-13033, doi: 10.1021/ja0375129.

[60]

M.N. Pahalagedara, L.R. Pahalagedara, C.H. Kuo, S. Dharmarathna, S.L. Suib, Ordered mesoporous mixed metal oxides: Remarkable effect of pore size on the catalytic activity, Langmuir, 30 (2014), pp. 8228-8237, doi: 10.1021/la502190b.

[61]

K. Tian, Q. Li, W. Jiang, X. Wang, S. Liu, Y. Zhao, G. Zhou, Effect of the pore structure of an active alumina catalyst on isobutene production by dehydration of isobutanol, RSC Adv., 11 (2021), pp. 11952-11958, doi: 10.1039/D1RA00136A.

[62]

K.L. Pan, S.J. Yu, S.Y. Yan, M.B. Chang, Direct N2O decomposition over La2NiO4-based perovskite-type oxides, J. Air Waste Manage. Assoc., 64 (2014), pp. 1260-1269, doi: 10.1080/10962247.2014.941513.

[63]

C. Tofan, D. Klvana, J. Kirchnerova, Direct decomposition of nitric oxide over perovskite-type catalysts: Part I. Activity when no oxygen is added to the feed, Appl. Catal. A, 223 (2002), pp. 275-286, doi: 10.1016/S0926-860X(01)00764-5.

[64]

F. Lin, Z. Wang, J. Shao, D. Yuan, Y. He, Y. Zhu, K. Cen, Catalyst tolerance to SO2 and water vapor of Mn based bimetallic oxides for NO deep oxidation by ozone, RSC Adv., 7 (2017), p. 25132, doi: 10.1039/C7RA04010E.

[65]

M.D. Argyle, C.H. Bartholomew, Heterogeneous catalyst deactivation and regeneration: A review, Catalysts, 5 (2015), pp. 145-269, doi: 10.3390/catal5010145.

AI Summary AI Mindmap
PDF (5572KB)

261

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/