Solid-electrolyte interphases for all-solid-state batteries

Yu Xia , Xu Han , Yue Ji , Simeng Zhang , Saiqi Wei , Yue Gong , Junyi Yue , Yueyue Wang , Xiaona Li , Zhiqiang Fang , Changtai Zhao , Jianwen Liang

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 9 -29.

PDF (7553KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 9 -29. DOI: 10.1016/j.chphma.2024.09.006
Research article
research-article

Solid-electrolyte interphases for all-solid-state batteries

Author information +
History +
PDF (7553KB)

Abstract

Interfacial engineering, particularly the design of artificial solid-electrolyte interphases (SEIs), has been successfully applied in all-solid-state batteries (ASSLBs) for industrial applications. However, a fundamental understanding of the synthesis and mechanism models of artificial SEIs in all-solid-state Li-ion batteries remains limited. In this review, recent advances in designing and synthesizing artificial SEIs for ASSLBs to solve interfacial issues are thoroughly discussed, covering three main preparation methods and their technical routes: 1) atomic layer deposition, 2) sol-gel methods, and 3) mechanical ball-milling methods. Moreover, advanced ex-situ characterization techniques for artificial SEIs are comprehensively summarized. Finally, this review provides perspectives on techniques for the interface engineering of artificial SEIs for ASSLBs, with focus on promising methods for industrial applications.

Keywords

All-solid-state lithium batteries / Interfacial engineering / Solid-electrolyte interphase / Atomic layer deposition / Sol-gel / Mechanical ball-milling

Cite this article

Download citation ▾
Yu Xia, Xu Han, Yue Ji, Simeng Zhang, Saiqi Wei, Yue Gong, Junyi Yue, Yueyue Wang, Xiaona Li, Zhiqiang Fang, Changtai Zhao, Jianwen Liang. Solid-electrolyte interphases for all-solid-state batteries. ChemPhysMater, 2025, 4(1): 9-29 DOI:10.1016/j.chphma.2024.09.006

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare the following personal relationships which may be considered as competing interests: Yu Xia, Xu Han, Yue Ji, Yueyue Wang, Zhiqiang Fang, Changtai Zhao, Jianwen Liang are currently employed by GRINM Group Co., Ltd. and China Automotive Battery Research Institute Co., Ltd.; Yue Gong is currently employed by China FAW Corporation Limited. Other authors declare that there are no competing interests.

CRediT authorship contribution statement

Yu Xia: Writing - review & editing, Writing - original draft. Xu Han: Writing - review & editing, Investigation. Yue Ji: Writing - review & editing. Simeng Zhang: Writing - review & editing, Visualization. Saiqi Wei: Writing - review & editing. Yue Gong: Writing - review & editing. Junyi Yue: Writing - review & editing. Yueyue Wang: Writing - review & editing. Xiaona Li: Writing - review & editing, Visualization, Supervision. Zhiqiang Fang: Writing - review & editing, Visualization, Supervision. Changtai Zhao: Writing - review & editing, Visualization, Supervision, Investigation, Conceptualization. Jianwen Liang: Writing - review & editing, Project administration, Funding acquisition, Conceptualization.

Acknowledgements

This research was supported by the National Key R&D Program of China (2022YFB3506300), National Natural Science Foundation of China (No. 52176185), Guangdong-Foshan Joint Fund (2023A1515140091), Guangdong High-level Innovation Institute project (2021B090905000), Ningbo Yongjiang Talent Introduction Program (2023A-184-G), and Eastern Institute of Technology, Ningbo.

References

[1]

J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang, D. Zhou, H. Wan, X. Xu, X. Yao, All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes, Electrochem. Energy Rev., 4 (2020) 101-135, doi: 10.1007/s41918-020-00081-4.

[2]

B. Li, Y. Chao, M. Li, Y. Xiao, R. Li, K. Yang, X. Cui, G. Xu, L. Li, C. Yang, Y. Yu, D.P. Wilkinson, J. Zhang, A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries, Electrochem. Energy Rev., 6 (2023), doi: 10.1007/s41918-022-00147-5.

[3]

H. Liu, X.B. Cheng, J.Q. Huang, H. Yuan, Y. Lu, C. Yan, G.L. Zhu, R. Xu, C.Z. Zhao, L.P. Hou, C. He, S. Kaskel, Q. Zhang, Controlling dendrite growth in solid-state electrolytes, ACS Energy Lett., 5 (2020) 833-843, doi: 10.1021/acsenergylett.9b02660.

[4]

Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries, Nat. Rev. Mater., 5 (2020) 229-252, doi: 10.1038/s41578-019-0165-5.

[5]

C. Liu, Z.G. Neale, G. Cao,Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today, 19 (2016) 109-123, doi: 10.1016/j.mattod.2015.10.009.

[6]

Q. Zhang, T. Peng, D. Zhan, X. Hu,Synthesis and electrochemical property of xLi2MnO3·(1 - x)LiMnO2 composite cathode materials derived from partially reduced Li2MnO3, J. Power Sources, 250 (2014) 40-49, doi: 10.1016/j.jpowsour.2013.10.139.

[7]

M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem., 17 (2007) 3112-3125, doi: doi: 10.1039/b702425h.

[8]

T. Ohzuku, A. Ueda, Phenomenological expression of solid-state redox potentials of LiCoO2  , LiCo1/2Ni1/2O2, and LiNiO2 insertion electrodes, J. Electrochem. Soc., 144 (1997) 2780-2785, doi: 10.1149/1.1837895.

[9]

J. Janek, W.G. Zeier, Challenges in speeding up solid-state battery development, Nat. Energy, 8 (2023) 230-240, doi: 10.1038/s41560-023-01208-9.

[10]

J. Lee, T. Lee, K. Char, K.J. Kim, J.W. Choi, Issues and advances in scaling up sulfide-based all-solid-state batteries, Acc. Chem. Res., 54 (2021) 3390-3402, doi: 10.1021/acs.accounts.1c00333.

[11]

N. Tarasova, I. Animitsa, Fluorine and chlorine doping in oxygen-deficient perovskites: A strategy for improving chemical stability, CR Chim. 22 (2019) 363-368. https://doi.org/10.1016/j.crci.2019.05.001.

[12]

B. Dong, A.R. Haworth, S.R. Yeandel, M.P. Stockham, M.S. James, J. Xiu, D. Wang, P. Goddard, K.E. Johnston, P.R. Slater, Halogenation of Li7La3Zr2O12 solid electrolytes: A combined solid-state NMR, computational and electrochemical study, J. Mater. Chem. A, 10 (2022) 11172-11185, doi: 10.1039/d1ta07309e.

[13]

R. Xu, X. Xia, S. Li, S. Zhang, X. Wang, J. Tu,All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor, J. Mater. Chem. A, 5 (2017) 6310-6317, doi: 10.1039/c7ta01147d.

[14]

H.J. Deiseroth, S.T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility, Angew. Chem. Int. Ed., 47 (2008) 755-758, doi: 10.1002/anie.200703900.

[15]

Q. Luo, C. Liu, L. Li, Z. Jiang, J. Yang, S. Chen, X. Chen, L. Zhang, S. Cheng, C. Yu,O-doping strategy enabling enhanced chemical/electrochemical stability of Li3InCl6 for superior solid-state battery performance, J. Energy Chem., 99 (2024) 484-494, doi: 10.1016/j.jechem.2024.07.058.

[16]

S. Chen, C. Yu, C. Wei, Z. Jiang, Z. Zhang, L. Peng, S. Cheng, J. Xie, Unraveling electrochemical stability and reversible redox of Y-doped Li2ZrCl6 solid electrolytes, Energy Mater. Adv., 4 (2023), doi: 10.34133/energymatadv.0019.

[17]

D.H.S. Tan, Y.S. Meng, J. Jang, Scaling up high-energy-density sulfidic solid-state batteries: A lab-to-pilot perspective, Joule (2022), doi: 10.1016/j.joule.2022.07.002.

[18]

C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li, X. Sun, All-solid-state lithium batteries enabled by sulfide electrolytes: Fom fundamental research to practical engineering design, Energy Environ. Sci., 14 (2021) 2577-2619, doi: 10.1039/d1ee00551k.

[19]

A. Sakuda, A. Hayashi, M. Tatsumisago, Interfacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater., 22 (2009) 949-956, doi: 10.1021/cm901819c.

[20]

M. Murayama, N. Sonoyama, A. Yamada, R.Kanno Material design of new lithium ionic conductor, thio-LISICON, in the Li2S-P2S5 system, Solid State Ionics, 170 (2004) 173-180, doi: 10.1016/j.ssi.2004.02.025.

[21]

A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami, Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling, J. Am. Ceram. Soc., 84 (2004) 477-479, doi: 10.1111/j.1151-2916.2001.tb00685.x.

[22]

A. Hayashi, S. Hama, T. Minami, M. Tatsumisago, Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses, Electrochem. Commun., 5 (2003) 111-114, doi: 10.1016/s1388-2481(02)00555-6.

[23]

M. Tachez, J. Malugani, R. Mercier, G. Robert, Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4, Solid State Ionics, 14 (1984) 181-185, doi: 10.1016/0167-2738(84)90097-3.

[24]

Y. Liang, H. Liu, G. Wang, C. Wang, Y. Ni, C.W. Nan, L.Z. Fan, Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries, InfoMat, 4 (2022), doi: 10.1002/inf2.12292.

[25]

C. Wang, K. Adair, X. Sun, All-solid-state lithium metal batteries with sulfide electrolytes: Understanding interfacial ion and electron transport, Acc. Mater. Res., 3 (2021) 21-32, doi: 10.1021/accountsmr.1c00137.

[26]

Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries, Adv. Mater., 31 (2019), Article e1901131, 10.1002/adma.201901131.

[27]

T. Yajima, Y. Hinuma, S. Hori, R. Iwasaki, R. Kanno, T. Ohhara, A. Nakao, K. Munakata, Z. Hiroi, Correlated Li-ion migration in the superionic conductor Li10GeP2S12, J. Mater. Chem. A, 9 (2021) 11278-11284, doi: 10.1039/d1ta00552a.

[28]

J. Liang, N. Chen, X. Li, X. Li, K.R. Adair, J. Li, C. Wang, C. Yu, M. Norouzi Banis, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Huang, X. Sun, Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability, Chem. Mater., 32 (2020) 2664-2672, doi: 10.1021/acs.chemmater.9b04764.

[29]

Y. Sun, K. Suzuki, S. Hori, M. Hirayama, R. Kanno, Superionic conductors: Li10+δ[SnySi1-y]1+δP2-δS12 with a Li10GeP2S12-type structure in the Li3PS4-Li4SnS4-Li4SiS4 quasi-ternary system, Chem. Mater., 29 (2017) 5858-5864, doi: 10.1021/acs.chemmater.7b00886.

[30]

Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1 (2016), 10.1038/nenergy.2016.30.

[31]

A. Kuhn, O. Gerbig, C. Zhu, F. Falkenberg, J. Maier, B.V. Lotsch, A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes, Phys. Chem. Chem. Phys., 16 (2014) 14669-14674, doi: 10.1039/c4cp02046d.

[32]

P. Bron, S. Johansson, K. Zick, J. Schmedt auf der Gunne, S. Dehnen, B. Roling, Li10SnP2S12: An affordable lithium superionic conductor, J. Am. Chem. Soc., 135 (2013) 15694-15697, doi: 10.1021/ja407393y.

[33]

N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nat. Mater., 10 (2011) 682-686, doi: 10.1038/nmat3066.

[34]

Z. Zhang, J. Zhang, H. Jia, L. Peng, T. An, J. Xie,Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-argyrodite, J. Power Sources, 450 (2020), 10.1016/j. jpowsour.2019.227601.

[35]

W.D. Jung, J.S. Kim, S. Choi, S. Kim, M. Jeon, H.G. Jung, K.Y. Chung, J.H. Lee, B.K. Kim, J.H. Lee, H. Kim, Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal crowth, Nano Lett., 20 (2020) 2303-2309, doi: 10.1021/acs.nanolett.9b04597.

[36]

E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, C. Liang, An iodide-based Li7P2S8I superionic conductor, J. Am. Chem. Soc., 137 (2015) 1384-1387, doi: 10.1021/ja508723m.

[37]

S. Boulineau, M. Courty, J.-M. Tarascon, V. Viallet,Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application, Solid State Ionics, 221 (2012) 1-5, doi: 10.1016/j. ssi.2012.06.008.

[38]

Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7 (2014) 627-631, doi: 10.1039/c3ee41655k.

[39]

P. Adeli, J.D. Bazak, K.H. Park, I. Kochetkov, A. Huq, G.R. Goward, L.F. Nazar, Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution, Angew. Chem. Int. Ed., 58 (2019) 8681-8686, doi: 10.1002/anie.201814222.

[40]

Y. Li, S. Song, H. Kim, K. Nomoto, H. Kim, X. Sun, A lithium superionic conductor for millimeter-thick battery electrode, Science (2023) 50-53, doi: 10.1126/science.add7138.

[41]

Y. Zhu, X. He, Y. Mo, First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries, J. Mater. Chem. A, 4 (2016) 3253-3266, doi: 10.1039/c5ta08574h.

[42]

F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes, Adv. Energy Mater., 6 (2016), 10.1002/aenm.201501590.

[43]

Y. Zhu, X. He, Y. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7 (2015) 23685-23693, doi: 10.1021/acsami.5b07517.

[44]

S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann, J. Janek,Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy, Solid State Ionics, 278 (2015) 98-105, doi: 10.1016/j. ssi.2015.06.001.

[45]

J. Li, H. Su, Y. Liu, Y. Zhong, X. Wang, J. Tu, Li alloys in all solid-state lithium batteries: A review of fundamentals and applications, Electrochem. Energy Rev., 7 (2024), 10.1007/s41918-024-00221-0.

[46]

L. Jia, J. Zhu, X. Zhang, B. Guo, Y. Du, X. Zhuang, Li-solid electrolyte interfaces/interphases in all-solid-state Li batteries, Electrochem. Energy Rev., 7 (2024), 10.1007/s41918-024-00212-1.

[47]

S. Yang, M. Takahashi, K. Yamamoto, K. Ohara, T. Watanabe, T. Uchiyama, T. Takami, A. Sakuda, A. Hayashi, M. Tatsumisago, Y. Uchimoto,Studies on the inhibition of lithium dendrite formation in sulfide solid electrolytes doped with LiX (X = Br, I), Solid State Ionics, 377 (2022), 10.1016/j. ssi.2022.115869.

[48]

Q. Wang, D. Liu, X. Ma, X. Zhou, Z. Lei, Cl-Doped Li10SnP2S12 with enhanced ionic conductivity and lower Li-ion migration barrier, ACS Appl. Mater. Interfaces, 14 (2022) 22225-22232, doi: 10.1021/acsami.2c05203.

[49]

G. Wang, C. Lin, C. Gao, P. Dong, B. Liang, X. Shen, Q. Jiao,Hydrolysis-resistant and anti-dendritic halide composite Li3PS4-LiI solid electrolyte for all-solid-state lithium batteries, Electrochim. Acta, 428 (2022), 10.1016/j. electacta.2022.140906.

[50]

Y. Nikodimos, W.N. Su, H.K. Bezabh, M.C. Tsai, C.C. Yang, B.J. Hwang,Effect of selected dopants on conductivity and moisture stability of Li3PS4 sulfide solid electrolyte: A first-principles study, Mater. Today Chem., 24 (2022), 10.1016/j. mtchem.2022.100837.

[51]

A.D. Bui, S.H. Choi, H. Choi, Y.J. Lee, C.H. Doh, J.W. Park, B.G. Kim, W.J. Lee, S.M. Lee, Y.C. Ha, Origin of the outstanding performance of dual halide doped Li7P2S8X (X = I, Br) solid electrolytes for all-solid-state lithium batteries, ACS Appl. Energy Mater., 4 (2021) 1-8, doi: 10.1021/acsaem.0c02321.

[52]

W. Hu, S. Zhong, X. Rao, T. Yan, M. Zeng, The stabilizing effect of Li4Ti5O12 coating on Li1.1Ni0.35Mn0.55O2 cathode for lquid and solid-state lithium-metal batteries, Front. Energy Res., 10 (2022), 10.3389/fenrg.2022.869404.

[53]

H. Zhu, M.H.A. Shiraz, L. Liu, Y. Hu, J. Liu, A facile and low-cost Al2O3 coating as an artificial solid electrolyte interphase layer on graphite/silicon composites for lithium-ion batteries, Nanotechnology, 32 (2021), Article 144001, 10.1088/1361-6528/abd580.

[54]

K. Zhang, F. Wu, K. Zhang, S. Weng, X. Wang, M. Gao, Y. Sun, D. Cao, Y. Bai, H. Xu, X. Wang, C. Wu,Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode, Energy Storage Mater., 41 (2021) 485-494, doi: 10.1016/j. ensm.2021.06.023.

[55]

M. Wang, X. Cheng, T. Cao, J. Niu, R. Wu, X. Liu, Y. Zhang, Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling, J. Alloy. Compd. (2021), p. 865, 10.1016/j. jallcom.2021.158748.

[56]

C.W. Wang, F.C. Ren, Y. Zhou, P.F. Yan, X.D. Zhou, S.J. Zhang, W. Liu, W.D. Zhang, M.H. Zou, L.Y. Zeng, X.Y. Yao, L. Huang, J.T. Li, S.G. Sun, Engineering the interface between LiCoO2 and Li10GeP2S12 solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries, Energy Environ. Sci., 14 (2021) 437-450, doi: 10.1039/d0ee03212c.

[57]

S. Shrestha, J. Kim, J. Jeong, H.J. Lee, S.C. Kim, H.J. Hah, K. Oh, S.H. Lee,Effect of amorphous LiPON coating on eectrochemical performance of LiNi0.8Mn0.1Co0.1O2 ( NMC811) in all solid-state batteries, J. Electrochem. Soc., 168 (2021), p. 060537, 10.1149/1945-7111/ac0b28.

[58]

J.S. Lee, Y.J. Park, Comparison of LiTaO3 and LiNbO3 surface layers prepared by post- and precursor-based coating methods for Ni-rich cathodes of all-solid-state batteries, ACS Appl. Mater. Interfaces, 13 (2021) 38333-38345, doi: 10.1021/acsami.1c10294.

[59]

K. Kaup, F. Lalère, A. Huq, A. Shyamsunder, T. Adermann, P. Hartmann, L.F. Nazar, Correlation of structure and fast ion conductivity in the solid solution series Li1+2xZn1-xPS4, Chem. Mater., 30 (2018) 592-596, doi: 10.1021/acs.chemmater.7b05108.

[60]

W.D. Richards, Y. Wang, L.J. Miara, J.C. Kim, G. Ceder, Design of Li1+2xZn1-xPS4, a new lithium ion conductor, Energy Environ. Sci., 9 (2016) 3272-3278, doi: 10.1039/c6ee02094a.

[61]

T. Krauskopf, S.P. Culver, W.G. Zeier, Bottleneck of diffusion and inductive effects in Li10Ge1-xSnxP2S12, Chem. Mater., 30 (2018) 1791-1798, doi: 10.1021/acs.chemmater.8b00266.

[62]

R. Kanno, M. Murayama, Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 System, J. Electrochem. Soc., 148 (2001) A742-A746, 10.1149/1.1379028.

[63]

Y. Lee, J. Jeong, H.D. Lim, S.O. Kim, H.G. Jung, K.Y. Chung, S. Yu, Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1-xSixS5I for all-solid-state batteries, ACS Sustain. Chem. Eng., 9 (2020) 120-128, doi: 10.1021/acssuschemeng.0c05549.

[64]

P. Adeli, J.D. Bazak, A. Huq, G.R. Goward, L.F. Nazar, Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes, Chem. Mater., 33 (2020) 146-157, doi: 10.1021/acs.chemmater.0c03090.

[65]

L. Zhou, A. Assoud, Q. Zhang, X. Wu, L.F. Nazar, New family of argyrodite thioantimonate lithium superionic conductors, J. Am. Chem. Soc., 141 (2019) 19002-19013, doi: 10.1021/jacs.9b08357.

[66]

A.M. Nolan, Y. Zhu, X. He, Q. Bai, Y. Mo, Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries, Joule, 2 (2018) 2016-2046, doi: 10.1016/j. joule.2018.08.017.

[67]

Y. Morino,Degradation rate at the solid-solid interface of sulfide-based solid electrolyte-cathode active material, J. Power Sources, 541 (2022), 10.1016/j. jpowsour.2022.231672.

[68]

L. Peng, H. Ren, J. Zhang, S. Chen, C. Yu, X. Miao, Z. Zhang, Z. He, M. Yu, L. Zhang, S. Cheng, J. Xie,LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures, Energy Storage Mater, 43 (2021) 53-61, doi: 10.1016/j. ensm.2021.08.028.

[69]

J. Haruyama, K. Sodeyama, Y. Tateyama, Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery, ACS Appl. Mater. Interfaces, 9 (2017) 286-292, doi: 10.1021/acsami.6b08435.

[70]

A. Hwang, Fabrication and electrochemical properties of Li4Ti5O12@Li6PS5Cl for all-solid-state lithium batteries using simple mechanical method, Int. J. Electrochem. Sc. (2017) 7795-7806, doi: 10.20964/2017.08.29.

[71]

N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki, Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification, Adv. Mater., 18 (2006) 2226-2229, doi: 10.1002/adma.200502604.

[72]

A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, Modification of interface between LiCoO2 Electrode and Li2S-P2S5 solid electrolyte using Li2O-SiO2 glassy layers, J. Electrochem. Soc. (2009), p. 156, 10.1149/1.3005972.

[73]

L. Sang, K.L. Bassett, F.C. Castro, M.J. Young, L. Chen, R.T. Haasch, J.W. Elam, V.P. Dravid, R.G. Nuzzo, A.A. Gewirth, Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries, Chem. Mater., 30 (2018) 8747-8756, doi: 10.1021/acs.chemmater.8b02368.

[74]

E. Wang, Y. Zhao, D. Xiao, X. Zhang, T. Wu, B. Wang, M. Zubair, Y. Li, X. Sun, H. Yu, Composite nanostructure construction on the grain surface of Li-rich layered oxides, Adv. Mater., 32 (2020), Article e1906070, 10.1002/adma.201906070.

[75]

H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago,Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode, Solid State Ionics, 192 (2011) 304-307, doi: 10.1016/j. ssi.2010.08.019.

[76]

K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, T. Sasaki,Interfacial modification for high-power solid-state lithium batteries, Solid State Ionics, 179 (2008) 1333-1337, doi: 10.1016/j. ssi.2008.02.017.

[77]

A.L. Davis, R. Garcia-Mendez, K.N. Wood, E. Kazyak, K.H. Chen, G. Teeter, J. Sakamoto, N.P. Dasgupta, Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces: Operando analysis and ALD interlayer effects, J. Mater. Chem. A, 8 (2020) 6291-6302, doi: 10.1039/c9ta11508k.

[78]

Y. Zhao, M. Amirmaleki, Q. Sun, C. Zhao, A. Codirenzi, L.V. Goncharova, C. Wang, K. Adair, X. Li, X. Yang, F. Zhao, R. Li, T. Filleter, M. Cai, X. Sun, Natural SEI-inspired dual-protective layers via atomic/molecular layer deposition for long-life metallic lithium anode, Matter, 1 (2019) 1215-1231, doi: 10.1016/j. matt.2019.06.020.

[79]

C. Wang, Y. Zhao, Q. Sun, X. Li, Y. Liu, J. Liang, X. Li, X. Lin, R. Li, K.R. Adair, L. Zhang, R. Yang, S. Lu, X. Sun,Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition, Nano Energy, 53 (2018) 168-174, doi: 10.1016/j. nanoen.2018.08.030.

[80]

Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K.R. Adair, R. Li, C. Zhang, J. Liu, L.Y. Kuo, Y. Hu, T.K. Sham, L. Zhang, R. Yang, S. Lu, X. Song, X. Sun, Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition, ACS Appl. Mater. Interfaces, 10 (2018) 31240-31248, doi: 10.1021/acsami.8b06366.

[81]

J.H. Woo, J.J. Travis, S.M. George, S.H. Lee, Utilization of Al2O3 atomic layer deposition for Li ion pathways in solid state Li batteries, J. Electrochem. Soc., 162 (2014) A344-A349, 10.1149/2.0441503jes.

[82]

Q. Zhang, A.M. Bruck, A.M. Stavola, W. Liang, P. Aurora, J.W. Gallaway, Enhanced electrochemical stability of sulfide-based LiNi0.8Mn0.1Co0.1O2 all-solid-state batteries by Ti surface doping, Batter. Supercaps, 4 (2020) 529-535, doi: 10.1002/batt.202000213.

[83]

N. Machida, J. Kashiwagi, M. Naito, T. Shigematsu,Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Mn1/3Co1/3O2 as cathode materials, Solid State Ionics, 225 (2012) 354-358, doi: 10.1016/j. ssi.2011.11.026.

[84]

C.C. Wang, J.W. Lin, Y.H. Yu, K.H. Lai, K.F. Chiu, C.C. Kei, Electrochemical and structural investigation on ultrathin ALD ZnO and TiO2 coated lithium-rich layered oxide cathodes, ACS Sustain. Chem. Eng., 6 (2018) 16941-16950, doi: 10.1021/acssuschemeng.8b04285.

[85]

X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Sci. Adv., 4 (2018), p. eaau9245, 10.1126/sciadv.aau9245.

[86]

J. Liang, X. Li, Y. Zhao, L.V. Goncharova, W. Li, K.R. Adair, M.N. Banis, Y. Hu, T.K. Sham, H. Huang, L. Zhang, S. Zhao, S. Lu, R. Li, X. Sun, An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries, Adv. Energy Mater., 9 (2019), 10.1002/aenm.201902125.

[87]

Z. Han, J. Yu, H. Zhan, X. Liu, Y. Zhou,Sb2O3-modified LiNi1/3Co1/3Mn1/3O2 material with enhanced thermal safety and electrochemical property, J. Power Sources, 254 (2014) 106-111, doi: 10.1016/j. jpowsour.2013.11.126.

[88]

X. Meng,Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: Opportunities and challenges, Energy Storage Mater, 30 (2020) 296-328, doi: 10.1016/j. ensm.2020.05.001.

[89]

Y. Zhao, K. Zheng, X. Sun, Addressing Interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition, Joule, 2 (2018) 2583-2604, doi: 10.1016/j. joule.2018.11.012.

[90]

J. Liu, M.N. Banis, X. Li, A. Lushington, M. Cai, R. Li, T.K. Sham, X. Sun, Atomic layer deposition of lithium tantalate solid-state electrolytes, J. Phys. Chem. C, 117 (2013) 20260-20267, doi: 10.1021/jp4063302.

[91]

X. Meng, X.Q. Yang, X. Sun, Emerging applications of atomic layer deposition for lithium-ion battery studies, Adv. Mater., 24 (2012) 3589-3615, doi: 10.1002/adma.201200397.

[92]

Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.H. Lee, Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries, Adv. Mater., 22 (2010) 2172-2176, doi: 10.1002/adma.200903951.

[93]

A. Sakuda, H. Kitaura, A. Hayashi, K. Tadanaga, M. Tatsumisago, Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses, Electrochem. Solid-State Lett., 11 (2008), 10.1149/1.2795837.

[94]

K. Zhu, P. Xue, G. Cheng, M. Wang, H. Wang, C. Bao, K. Zhang, Q. Li, J. Sun, S. Guo, Y. Yao, C.P. Wong,Thermo-managing and flame-retardant scaffolds suppressing dendritic growth and polysulfide shuttling toward high-safety lithium-sulfur batteries, Energy Storage Mater., 43 (2021) 130-142, doi: 10.1016/j. ensm.2021.08.031.

[95]

W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. Ceder, Interface stability in solid-state batteries, Chem. Mater., 28 (2015) 266-273, doi: 10.1021/acs.chemmater.5b04082.

[96]

G. Hautier, A. Jain, S.P. Ong, B. Kang, C. Moore, R. Doe, G. Ceder, Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations, Chem. Mater., 23 (2011) 3495-3508, doi: 10.1021/cm200949v.

[97]

S.P. Culver, R. Koerver, W.G. Zeier, J. Janek, On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries, Adv. Energy Mater., 9 (2019), 10.1002/aenm.201900626.

[98]

Z. Yu, X. Zhang, C. Fu, H. Wang, M. Chen, G. Yin, H. Huo, J. Wang, Dendrites in solid-state batteries: Ion transport behavior, advanced characterization, and interface regulation, Adv. Energy Mater., 11 (2021), 10.1002/aenm.202003250.

[99]

F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang, C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy, 4 (2019) 187-196, doi: 10.1038/s41560-018-0312-z.

[100]

Y. Gao, A.M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo, S.H. Bo, Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors, Chem. Rev., 120 (2020) 5954-6008, doi: 10.1021/acs.chemrev.9b00747.

[101]

Y. Wang, Q. Zhang, Z.C. Xue, L. Yang, J. Wang, F. Meng, Q. Li, H. Pan, J.N. Zhang, Z. Jiang, W. Yang, X. Yu, L. Gu, H. Li, An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances, Adv. Energy Mater., 10 (2020), 10.1002/aenm.202001413.

[102]

A. Banerjee, H. Tang, X. Wang, J.H. Cheng, H. Nguyen, M. Zhang, D.H.S. Tan, T.A. Wynn, E.A. Wu, J.M. Doux, T. Wu, L. Ma, G.E. Sterbinsky, M.S. D'Souza, S.P. Ong, Y.S. Meng, Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries, ACS Appl. Mater. Interfaces, 11 (2019) 43138-43145, doi: 10.1021/acsami.9b13955.

[103]

J.-H. You, S.-J. Zhang, L. Deng, M.Z. Li, X.M. Zheng, J.T. Li, Y. Zhou, L. Huang, S.G. Sun,Suppressing Li dendrite by a protective biopolymeric film from tamarind seed polysaccharide for high-performance Li metal anode, Electrochim. Acta, 299 (2019) 636-644, doi: 10.1016/j. electacta.2019.01.045.

[104]

K.N. Wood, K.X. Steirer, S.E. Hafner, C. Ban, S. Santhanagopalan, S.H. Lee, G. Teeter, Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes, Nat. Commun., 9 (2018), p. 2490, 10.1038/s41467-018-04762-z.

[105]

W. Zhang, T. Leichtweiss, S.P. Culver, R. Koerver, D. Das, D.A. Weber, W.G. Zeier, J. Janek, The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries, ACS Appl. Mater. Interfaces, 9 (2017) 35888-35896, doi: 10.1021/acsami.7b11530.

[106]

Z. Yu, Y. Cui, Z. Bao, Design principles of artificial solid electrolyte interphases for lithium-metal anodes, Cell Rep. Phys. Sci., 1 (2020), p. 100119, 10.1016/j. xcrp.2020.100119.

[107]

S. Wang, H. Xu, W. Li, A. Dolocan, A. Manthiram, Interfacial chemistry in solid-state batteries: Formation of interphase and its consequences, J. Am. Chem. Soc., 140 (2018) 250-257, doi: 10.1021/jacs.7b09531.

[108]

R. Tian, X. Feng, H. Duan, P. Zhang, H. Li, H. Liu, L. Gao, Low-weight 3D Al2O3 network as an artificial layer to stabilize lithium deposition, ChemSusChem, 11 (2018) 3243-3252, doi: 10.1002/cssc.201801234.

[109]

X. Sun, S. Yang, T. Zhang, Y. Shi, L. Dong, G. Ai, D. Li, W. Mao, Regulating Li-ion flux with a high-dielectric hybrid artificial SEI for stable Li metal anodes, Nanoscale, 14 (2022) 5033-5043, doi: 10.1039/d2nr01097f.

[110]

M. Schnabel, S.P. Harvey, E. Arca, C. Stetson, G. Teeter, C. Ban, P. Stradins, Surface SiO2 thickness controls uniform-to-localized transition in lithiation of silicon anodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 12 (2020) 27017-27028, doi: 10.1021/acsami.0c03158.

[111]

Y. Sakurai, A. Sakuda, A. Hayashi, M. Tatsumisago,Preparation of amorphous Li4SiO4-Li3PO4 thin films by pulsed laser deposition for all-solid-state lithium secondary batteries, Solid State Ionics, 182 (2011) 59-63, doi: 10.1016/j. ssi.2010.12.001.

[112]

Q. Luo, L. Ming, D. Zhang, C. Wei, Z. Wu, Z. Jiang, C. Liu, S. Liu, K. Cao, L. Zhang, C. Yu, S. Cheng, Constructing Br-doped Li10SnP2S12-based all-solid-state batteries with superior performances, Energy Mater. Adv., 4 (2023), 10.34133/energymatadv.0065.

[113]

Q. Luo, C. Liu, C. Wei, Z. Wu, Y. Wang, L. Li, Z. Jiang, L. Ming, J. Yang, L. Zhang, X. Chen, S. Cheng, C. Yu,Deep insight of interfacial stability of LiNi0.7Co0.1Mn0.2O2-based all-solid-state battery with superior performances, J. Power Sources, 608 (2024), 10.1016/j. jpowsour.2024.234616.

[114]

F. Han, J. Yue, X. Zhu, C. Wang, Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation, Adv. Energy Mater., 8 (2018), 10.1002/aenm.201703644.

[115]

X. Fu, G. Wang, D. Dang, Q. Liu, X. Xiong, C. Wu, Sulfuryl chloride as a functional additive towards dendrite-free and long-life Li metal anodes, J. Mater. Chem. A, 7 (2019) 25003-25009, doi: 10.1039/c9ta09068a.

[116]

B. Zhao, Y. Shi, J. Wu, C. Xing, Y. Liu, W. Ma, X. Liu, Y. Jiang, J. Zhang,Stabilizing Li7P3S11/lithium metal anode interface by in-situ bifunctional composite layer, Chem. Eng. J., 429 (2022), p. 132410, 10.1016/j. cej.2021.132411.

[117]

X. Ji, S. Hou, P. Wang, X. He, N. Piao, J. Chen, X. Fan, C. Wang, Solid-state electrolyte design for lithium dendrite suppression, Adv. Mater., 32 (2020), Article e2002741, 10.1002/adma.202002741.

[118]

D. Lee, S. Sun, H. Park, J. Kim, K. Park, I. Hwang, Y. Jung, T. Song, U. Paik,Stable artificial solid electrolyte interphase with lithium selenide and lithium chloride for dendrite-free lithium metal anodes, J. Power Sources, 506 (2021), 10.1016/j. jpowsour.2021.230158.

[119]

C. Wei, Y. Xiao, Z. Wu, C. Liu, Q. Luo, Z. Jiang, L. Li, L. Ming, J. Yang, S. Cheng, C. Yu, Construction of LiCl/LiF/LiZn hybrid SEI interface achieving high-performance sulfide-based all-solid-state lithium metal batteries, Sci. Chi. Chem., 67 (2024) 1990-2001, doi: 10.1007/s11426-024-2055-4.

[120]

A.M. Glass, K. Nassau, T.J. Negran, Ionic conductivity of quenched alkali niobate and tantalate glasses, J. Appl. Phys., 49 (1978) 4808-4811, doi: 10.1063/1.325509.

[121]

F. Poulsen, Ionic conductivity of solid lithium iodide and its monohydrate, Solid State Ionics, 2 (1981) 53-57, 10.1016/0167-2738(81)90020-5.

[122]

N. Özer, C.M. Lampert, Electrochemical lithium insertion in sol-gel deposited LiNbO3 films, Sol. Energy Mater. Sol. C., 39 (1995) 367-375, doi: 10.1016/0927-0248(96)80002-x.

[123]

R. Chiba, Ionic conductivity and morphology in Sc2O3 and Al2O3 doped ZrO2 films prepared by the sol-gel method, Solid State Ionics, 104 (1997) 259-266, 10.1016/s0167-2738(97)00423-2.

[124]

X. Song, M. Jia, R. Chen, Synthesis of Li3VO4 by the citrate sol-gel method and its ionic conductivity, J. Mater. Process. Tech., 120 (2002) 21-25, 10.1016/s0924-0136(01)01044-5.

[125]

R.H. Chen, L.F. Chen, C.T. Chia, Impedance spectroscopic studies on congruent LiNbO3 single crystal, J. Phys.: Condens. Matter, 19 (2007), 10.1088/0953-8984/19/8/086225.

[126]

A. Nakagawa, N. Kuwata, Y. Matsuda, J. Kawamura, Characterization of stable solid electrolyte lithium silicate for thin film lithium battery, J. Phys. Soc. Jpn., 79 (2010) 98-101, doi: 10.1143/jpsjs.79sa.98.

[127]

C. Li, L. Gu, J. Maier, Enhancement of the Li conductivity in LiF by introducing glass/crystal interfaces, Adv. Funct. Mater., 22 (2012) 1145-1149, doi: 10.1002/adfm.201101798.

[128]

F. Pagani, E. Stilp, R. Pfenninger, E.C. Reyes, A. Remhof, Z. Balogh-Michels, A. Neels, J. Sastre-Pellicer, M. Stiefel, M. Dobeli, M.D. Rossell, R. Erni, J.L.M. Rupp, C. Battaglia, Epitaxial thin films as a model system for Li-ion conductivity in Li4Ti5O12, ACS Appl. Mater. Interfaces, 10 (2018) 44494-44500, doi: 10.1021/acsami.8b16519.

[129]

D. Young, A. Ransil, R. Amin, Z. Li, Y.M. Chiang, Electronic conductivity in the Li4/3Ti5/3O4-Li7/3Ti5/3O4 system and variation with state-of-charge as a Li battery anode, Adv. Energy Mater., 3 (2013) 1125-1129, doi: 10.1002/aenm.201300134.

[130]

J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton, C. Kim, J. Cabana, Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries, Chem. Mater., 26 (2014) 3128-3134, doi: 10.1021/cm500512n.

[131]

B. Put, M.J. Mees, N. Hornsveld, A. Sepulveda, P.M. Vereecken, W.M.M. Kessels, M. Creatore, Plasma-assisted ALD of lipo(N) for solid state batteries, ECS Trans, 75 (2017) 61-69, doi: 10.1149/07520.0061ecst.

[132]

N.I.P. Ayu, E. Kartini, L.D. Prayogi, M. Faisal, Supardi, Crystal structure analysis of Li3PO4 powder prepared by wet chemical reaction and solid-state reaction by using X-ray diffraction (XRD), Ionics, 22 (2016) 1051-1057, doi: 10.1007/s11581-016-1643-z.

[133]

Y. Ito, Y. Sakurai, S. Yubuchi, A. Sakuda, A. Hayashi, M. Tatsumisago, Application of LiCoO2 particles coated with lithium ortho-oxosalt thin films to sulfide-type all-solid-state lithium batteries, J. Electrochem. Soc., 162 (2015) A1610-A1616, 10.1149/2.0771508jes.

[134]

A.F. Fuzlin, Y. Nagao, I.I. Misnon, A.S. Samsudin, Studies on structural and ionic transport in biopolymer electrolytes based on alginate-LiBr, Ionics, 26 (2019) 1923-1938, doi: 10.1007/s11581-019-03386-7.

[135]

H. Yan, D. Zhang, X.Duo Qilu, X. Sheng,A review of spinel lithium titanate (Li4Ti5O12) as electrode material for advanced energy storage devices, Ceram. Int., 47 (2021) 5870-5895, doi: 10.1016/j. ceramint.2020.10.241.

[136]

C. Wang, S. Wang, Y.B. He, L. Tang, C. Han, C. Yang, M. Wagemaker, B. Li, Q.H. Yang, J.K. Kim, F. Kang,Combining fast Li-ion battery cycling with large volumetric energy density: grain boundary induced high electronic and ionic conductivity in Li4Ti5O12 spheres of densely packed nanocrystallites, Chem. Mater., 27 (2015) 5647-5656, doi: 10.1021/acs. chemmater.5b02027.

[137]

Y.J. Kim, T.J. Kim, J.W. Shin, B. Park, J. Cho, The effect of Al2O3 coating on the cycle lfe performance in thin-film LiCoO2 cathodes, J. Electrochem. Soc., 149 (2002) A1337-A1341, 10.1149/1.1505634.

[138]

S. Gao, N. Liu, H. Yang, P. Cao,Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries - A review, Mater. Today, 40 (2020) 140-159, doi: 10.1016/j. mattod.2020.06.011.

[139]

C. Liebenow, K. Lhder, Electrochemical characterization of polymer precoated lithium electrodes, J. Appl. Electrochem., 26 (1996) 689-692, doi: 10.1007/bf00241509.

[140]

Y.M. Lee, N.S. Choi, J.H. Park, J.K. Park, Electrochemical performance of lithium/sulfur batteries with protected Li anodes, J. Power Sources, 119-121 (2003) 964-972, doi: 10.1016/s0378-7753(03)00300-8.

[141]

A. Orue, M. Arrese-Igor, R. Cid, X. Júdez, N. Gómez, J.M. López del Amo, W. Manalastas, M. Srinivasan, C. Rojviriya, M. Armand, F. Aguesse, P. López-Aranguren, Enhancing the polymer electrolyte-Li metal interface on high-voltage solid-state batteries with Li-based additives inspired by the surface chemistry of Li7La3Zr2O12, J. Mater. Chem. A, 10 (2022) 2352-2361, doi: 10.1039/d1ta08362g.

[142]

T. Deng, L. Cao, X. He, A.M. Li, D. Li, J. Xu, S. Liu, P. Bai, T. Jin, L. Ma, M.A. Schroeder, X. Fan, C. Wang, In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries, Chem, 7 (2021) 3052-3068, doi: 10.1016/j. chempr.2021.06.019.

[143]

B.J. O’Neill, D.H.K. Jackson, J. Lee, C. Canlas, P.C. Stair, C.L. Marshall, J.W. Elam, T.F. Kuech, J.A. Dumesic, G.W. Huber, Catalyst design with atomic layer deposition, ACS Catal., 5 (2015) 1804-1825, doi: 10.1021/cs501862h.

[144]

J. Liu, X. Sun, Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition, Nanotechnology, 26 (2015), Article 024001, 10.1088/0957-4484/26/2/024001.

[145]

X. Meng, J. Liu, X. Li, M.N. Banis, J. Yang, R. Li, X. Sun, Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes, RSC Adv., 3 (2013) 7285-7288, doi: 10.1039/c3ra00033h.

[146]

B. Wang, Y. Zhao, M.N. Banis, Q. Sun, K.R. Adair, R. Li, T.K. Sham, X. Sun, Atomic layer deposition of lithium niobium oxides as potential solid-state electrolytes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 10 (2018) 1654-1661, doi: 10.1021/acsami.7b13467.

[147]

B. Wang, J. Liu, M. Norouzi Banis, Q. Sun, Y. Zhao, R. Li, T.K. Sham, X. Sun, Atomic layer deposited lithium silicates as solid-state electrolytes for all-solid-state batteries, ACS Appl. Mater. Interfaces, 9 (2017) 31786-31793, doi: 10.1021/acsami.7b07113.

[148]

B. Wang, J. Liu, Q. Sun, R. Li, T.K. Sham, X. Sun, Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries, Nanotechnology, 25 (2014), p. 504007, 10.1088/0957-4484/25/50/504007.

[149]

D.M. King, J.A. Spencer, X. Liang, L.F. Hakim, A.W. Weimer, Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry, Surf. Coat. Tech., 201 (2007) 9163-9171, doi: 10.1016/j. surfcoat.2007.05.002.

[150]

J.A. McCormick, B.L. Cloutier, A.W. Weimer, S.M. George, Rotary reactor for atomic layer deposition on large quantities of nanoparticles, J. Vac. Sci. Tech. A, 25 (2007) 67-74, doi: 10.1116/1.2393299.

[151]

J.H. Woo, J.E. Trevey, A.S. Cavanagh, Y.S. Choi, S.C. Kim, S.M. George, K.H. Oh, S.H. Lee, Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries, J. Electrochem. Soc., 159 (2012) A1120-A1124, 10.1149/2.085207jes.

[152]

Y.S. Jung, A.S. Cavanagh, A.C. Dillon, M.D. Groner, S.M. George, S.H. Lee, Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition, J. Electrochem. Soc., 157 (2010) A75-A81, 10.1149/1.3258274.

[153]

M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Low-temperature Al2O3 atomic layer deposition, Chem. Mater., 16 (2004) 639-645, doi: 10.1021/cm0304546.

[154]

A.W. Ott, J.W. Klaus, J.M. Johnson, S.M. George, Al2O3 thin film growth on Si(100) using binary reaction sequence chemistry, Thin Solid Films, 292 (1997) 135-144, 10.1016/s0040-6090(96)08934-1.

[155]

C. Wang, X. Li, Y. Zhao, M.N. Banis, J. Liang, X. Li, Y. Sun, K.R. Adair, Q. Sun, Y. Liu, F. Zhao, S. Deng, X. Lin, R. Li, Y. Hu, T.K. Sham, H. Huang, L. Zhang, R. Yang, S. Lu, X. Sun, Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries, Small Methods, 3 (2019), p. 1900261, 10.1002/smtd.201900261.

[156]

X. Han, Y. Gong, K.K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16 (2017) 572-579, doi: 10.1038/nmat4821.

[157]

D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Z. Wang, Nanomaterial by sol-gel method: Synthesis and application, Adv. Mater. Sci. Eng., 2021 (2021) 1-21, doi: 10.1155/2021/5102014.

[158]

A. Dehghanghadikolaei, J. Ansary, R. Ghoreishi, Sol-gel process applications: A mini-review, Proc. Nat. Res. Soc., 2 (2018) 02008-02029, doi: 10.11605/j.pnrs.201802008.

[159]

L. Znaidi,Sol-gel-deposited ZnO thin films: A review, Mat. Sci. Eng. B, 174 (2010) 18-30, doi: 10.1016/j. mseb.2010.07.001.

[160]

N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, T. Sasaki,LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun., 9 (2007) 1486-1490, doi: 10.1016/j. elecom.2007.02.008.

[161]

W. Geffcken, E. Berger, Verfahren zur änderung des reflexionsvermögens optischer gläser, Deutsches Reichspatent, assigned to Jenaer Glaswerk Schott & Gen., 736 (1939), p. 2 Jena.

[162]

H. Schroeder, Properties and applications of oxide layers deposited on glass from organic solutions, Opt. Acta., 9 (1962) 249-254, doi: 10.1080/713826428.

[163]

H. Dislich, New routes to multicomponent oxide glasses, Angew. Chem. Int. Ed., 10 (1971) 363-370, doi: 10.1002/anie.197103631.

[164]

J. Haruyama, K. Sodeyama, L. Han, K. Takada, Y. Tateyama, Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery, Chem. Mater., 26 (2014) 4248-4255, doi: 10.1021/cm5016959.

[165]

T. Kozawa,Lattice deformation of LiNi0.5Mn1.5O4 spinel cathode for Li-ion batteries by ball milling, J. Power Sources, 419 (2019) 52-57, doi: 10.1016/j. jpowsour.2019.02.063.

[166]

R. Janot, D. Guerard, Ball-milling in liquid media: Applications to the preparation of anodic materials for lithium-ion batteries, Prog. Mater. Sci., 50 (2005) 1-92, 10.1016/s0079-6425(03)00050-1.

[167]

C.C. Piras, S. Fernandez-Prieto, W.M. De Borggraeve, Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives, Nanoscale Adv., 1 (2019) 937-947, doi: 10.1039/c8na00238j.

[168]

G. Gorrasi, A. Sorrentino, Mechanical milling as a technology to produce structural and functional bio-nanocomposites, Green Chem., 17 (2015) 2610-2625, doi: 10.1039/c5gc00029g.

[169]

A.L. Ramirez, Z.S. Kean, J.A. Orlicki, M. Champhekar, S.M. Elsakr, W.E. Krause, S.L. Craig, Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces, Nat. Chem., 5 (2013) 757-761, doi: 10.1038/nchem.1720.

[170]

F.A. Stevie, C.L. Donley, Introduction to x-ray photoelectron spectroscopy, J. Vac. Sc. Technol. A, 38 (2020), Article 063204, 10.1116/6.0000412.

[171]

C. Dietrich, R. Koerver, M.W. Gaultois, G. Kieslich, G. Cibin, J. Janek, W.G. Zeier, Spectroscopic characterization of lithium thiophosphates by XPS and XAS - a model to help monitor interfacial reactions in all-solid-state batteries, Phys. Chem. Chem. Phys., 20 (2018) 20088-20095, doi: 10.1039/c8cp01968a.

[172]

M.S. Wagner, S.L. McArthur, M. Shen, T.A. Horbett, D.G. Castner, Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): Detection of low amounts of adsorbed protein, J. Biomater. Sci. Polym. Ed., 13 (2002) 407-428, 10.1163/156856202320253938.

[173]

A. Zhang, J. Wang, R. Yu, H. Zhuo, C. Wang, Z. Ren, J. Wang, Practical application of Li-rich materials in halide all-solid-state batteries and interfacial reactions between cathodes and electrolytes, ACS Appl. Mater. Interfaces, 15 (2023) 8190-8199, doi: 10.1021/acsami.2c21569.

[174]

A.Y. Kim, F. Strauss, T. Bartsch, J.H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann, T. Brezesinski, Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries, Chem. Mater., 31 (2019) 9664-9672, doi: 10.1021/acs.chemmater.9b02947.

[175]

T. Stephan, TOF-SIMS in cosmochemistry, Planet. Space Sci., 49 (2001) 859-906, doi: 10.1016/s0032-0633(01)00037-x.

[176]

Y. Morino, S. Kanada,Electrochemical and material analyses for sulfide-based solid electrolyte-cathode interface under high voltage, J. Power Sources, 509 (2021), 10.1016/j. jpowsour.2021.230376.

[177]

Y. Morino, H. Sano, A. Shiota, K. Kawamoto, T. Takahashi, N. Miyashita, A. Sakuda, A. Hayashi, Positive electrode performance of all-solid-state battery with sulfide solid electrolyte exposed to low-moisture air, Electrochemistry, 91 (2023), Article 037005, 10.5796/electrochemistry.23-00003.

[178]

Y. Sun, C. Zhao, K.R. Adair, Y. Zhao, L.V. Goncharova, J. Liang, C. Wang, J. Li, R. Li, M. Cai, T.K. Sham, X. Sun, Regulated lithium plating and stripping by a nano-scale gradient inorganic-organic coating for stable lithium metal anodes, Energy Environ. Sci., 14 (2021) 4085-4094, doi: 10.1039/d1ee01140e.

[179]

I.V. Veryovkin, C.E. Tripa, A.V. Zinovev, S.V. Baryshev, Y. Li, D.P. Abraham,TOF SIMS characterization of SEI layer on battery electrodes, Nucl. Instrum. Methods Phys. Res. B, 332 (2014) 368-372, doi: 10.1016/j. nimb.2014.02.098.

[180]

K. Park, B.C. Yu, J.W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, J.B. Goodenough, Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12, Chem. Mater., 28 (2016) 8051-8059, doi: 10.1021/acs.chemmater.6b03870.

[181]

M. Liu, C. Wang, C. Zhao, E. van der Maas, K. Lin, V.A. Arszelewska, B. Li, S. Ganapathy, M. Wagemaker, Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements, Nat. Commun., 12 (2021), p. 5943, 10.1038/s41467-021-26190-2.

[182]

M. Nakayama, S. Wada, S. Kuroki, M. Nogami, Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes, Energy Environ. Sci., 3 (2010) 1995-2002, doi: 10.1039/c0ee00266f.

[183]

H. Li, W. Hua, X. Liu-Théato, Q. Fu, M. Desmau, A. Missyul, M. Knapp, H. Ehrenberg, S. Indris, New insights into lithium hopping and ordering in LiNiO2 cathodes during Li (de)intercalation, Chem. Mater., 33 (2021) 9546-9559, doi: 10.1021/acs.chemmater.1c02680.

[184]

B.J. Inkson,Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Mater. Characteriz. Using Nondestruct. Eval. (NDE) Methods (2016) 17-43.

[185]

J.W. Lee, Y.J. Park, Enhanced cathode/sulfide electrolyte interface stability using an Li2ZrO3 coating for all-solid-state batteries, J. Electrochem. Sci. Tech., 9 (2018) 176-183, doi: 10.33961/jecst.2018.9.3.176.

[186]

A. Hayashi, A. Sakuda, M. Tatsumisago, Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries, Front. Energy Res., 4 (2016), p. 25, 10.3389/fenrg.2016.00025.

[187]

M. Winey, J.B. Meehl, E.T. O'Toole, T.H. Giddings Jr., Conventional transmission electron microscopy, Mol. Biol. Cell., 25 (2014) 319-323, doi: 10.1091/mbc.E12-12-0863.

[188]

M.I. Nandasiri, L.E. Camacho-Forero, A.M. Schwarz, V. Shutthanandan, S. Thevuthasan, P.B. Balbuena, K.T. Mueller, V. Murugesan, In situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries, Chem. Mater., 29 (2017) 4728-4737, doi: 10.1021/acs.chemmater.7b00374.

[189]

S. Wenzel, S. Randau, T. Leichtweiß, D.A. Weber, J. Sann, W.G. Zeier, J. Janek, Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode, Chem. Mater., 28 (2016) 2400-2407, doi: 10.1021/acs.chemmater.6b00610.

[190]

X. Li, Z. Ren, M. Norouzi Banis, S. Deng, Y. Zhao, Q. Sun, C. Wang, X. Yang, W. Li, J. Liang, X. Li, Y. Sun, K. Adair, R. Li, Y. Hu, T.K. Sham, H. Huang, L. Zhang, S. Lu, J. Luo, X. Sun, Unravelling the chemistry and microstructure evolution of a cathodic interface in sulfide-based all-solid-state Li-ion batteries, ACS Energy Lett., 4 (2019) 2480-2488, doi: 10.1021/acsenergylett.9b01676.

[191]

D. Chen, J.H. Wang, T.F. Chou, B. Zhao, M.A. El-Sayed, M. Liu, Unraveling the nature of anomalously fast energy storage in T-Nb2O5, J. Am. Chem. Soc., 139 (2017) 7071-7081, doi: 10.1021/jacs.7b03141.

[192]

C. Ghanty, B. Markovsky, E.M. Erickson, M. Talianker, O. Haik, Y. Tal-Yossef, A. Mor, D. Aurbach, J. Lampert, A. Volkov, J.Y. Shin, A. Garsuch, F.F. Chesneau, C. Erk, Li+-Ion extraction/insertion of Ni-rich Li1+x(NiyCozMnz)wO2 (0.005<x<0.03; y:z=8:1, w≈1) electrodes: In situ XRD and Raman spectroscopy study, ChemElectroChem, 2 (2015) 1479-1486, doi: 10.1002/celc.201500160.

[193]

D. Chen, D. Ding, X. Li, G.H. Waller, X. Xiong, M.A. El-Sayed, M. Liu, Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy, Chem. Mater., 27 (2015) 6608-6619, doi: 10.1021/acs.chemmater.5b03118.

[194]

X. Li, Y. Qiao, S. Guo, Z. Xu, H. Zhu, X. Zhang, Y. Yuan, P. He, M. Ishida, H. Zhou, Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials, Adv Mater, 30 (2018), Article e1705197, 10.1002/adma.201705197.

[195]

M. Lucero, S. Qiu, Z. Feng, In situ characterizations of solid-solid interfaces in solid-state batteries using synchrotron X-ray techniques, Carbon Energy, 3 (2021) 762-783, doi: 10.1002/cey2.131.

[196]

S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties, Nanoscale, 10 (2018) 12871-12934, doi: 10.1039/c8nr02278j.

[197]

C. Wang, J. Liang, M. Jiang, X. Li, S. Mukherjee, K. Adair, M. Zheng, Y. Zhao, F. Zhao, S. Zhang, R. Li, H. Huang, S. Zhao, L. Zhang, S. Lu, C.V. Singh, X. Sun,Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries, Nano Energy, 76 (2020), Article 105015, 10.1016/j. nanoen.2020.105015.

[198]

R. Yu, C. Wang, H. Duan, M. Jiang, A. Zhang, A. Fraser, J. Zuo, Y. Wu, Y. Sun, Y. Zhao, J. Liang, J. Fu, S. Deng, Z. Ren, G. Li, H. Huang, R. Li, N. Chen, J. Wang, X. Li, C.V. Singh, X. Sun, Manipulating charge-transfer kinetics of lithium-rich layered oxide cathodes in halide all-solid-state batteries, Adv. Mater., 35 (2023), Article e2207234, 10.1002/adma.202207234.

[199]

Y. Xu, Y. Ye, S. Zhao, J. Feng, J. Li, H. Chen, A. Yang, F. Shi, L. Jia, Y. Wu, X. Yu, P.A. Glans-Suzuki, Y. Cui, J. Guo, Y. Zhang, situ X-ray absorption spectroscopic investigation of the capacity degradation mechanism in Mg/S batteries, Nano Lett., 19 (2019) 2928-2934, doi: 10.1021/acs.nanolett.8b05208.

[200]

C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature, 121 (1928) 501-502, doi: 10.1038/121501c0.

[201]

S. Rajendran, N.K. Thangavel, K. Mahankali, L.M.R. Arava, Toward moisture-stable and dendrite-free garnet-type solid-state electrolytes, ACS Appl. Energy Mater., 3 (2020) 6775-6784, doi: 10.1021/acsaem.0c00905.

AI Summary AI Mindmap
PDF (7553KB)

574

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/