Recent progress in two-dimensional graphdiyne: Synthesis, characterization, and applications

Dinh Phuc Do , Eunji Lee , Viet Q. Bui , Hyoyoung Lee

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 91 -107.

PDF (7062KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 91 -107. DOI: 10.1016/j.chphma.2024.09.005
Review Article

Recent progress in two-dimensional graphdiyne: Synthesis, characterization, and applications

Author information +
History +
PDF (7062KB)

Abstract

Graphdiyne (GDY) is a novel carbon allotrope that has attracted significant attention owing to its unique structural and electronic properties. Comprising sp2- and sp-hybridized carbon atoms, GDY forms a two-dimensional structure via conjugated −C≡C−C≡C− linkages. These linkages result in a highly π-conjugated system with a natural bandgap that distinguishes GDY from other carbon materials such as graphene. This review systematically provides an overview of GDY, with a focus on its intrinsic properties and synthesis strategies, techniques to characterize its structure, and recent advanced applications. First, we summarize several GDY synthesis strategies, providing a detailed discussion of the advantages and disadvantages associated with each approach. Subsequently, several practical and precise techniques, including solid nuclear magnetic resonance, Raman, Fourier-transform infrared, and X-ray photoelectron spectroscopies, transmission electron microscopy, and selected area electron diffraction, to characterize the GDY structure are discussed. Next, we elucidate the unique structural and electronic properties of GDY using both theoretical frameworks and experimental methodologies. Finally, we comprehensively discuss the recent applications of GDY in various fields, including biomedicine, electronics, optoelectronics, energy storage, and catalysis.

Keywords

Graphdiyne / 2D material / Direct bandgap / High mobility / Practical applications

Cite this article

Download citation ▾
Dinh Phuc Do, Eunji Lee, Viet Q. Bui, Hyoyoung Lee. Recent progress in two-dimensional graphdiyne: Synthesis, characterization, and applications. ChemPhysMater, 2025, 4(2): 91-107 DOI:10.1016/j.chphma.2024.09.005

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Dinh Phuc Do: Writing - review & editing, Writing - original draft, Methodology, Formal analysis, Data curation, Conceptualization. Eunji Lee: Writing - review & editing, Writing - original draft, Methodology, Investigation, Formal analysis, Conceptualization. Viet Q. Bui: Writing - review & editing. Hyoyoung Lee: Writing - review & editing, Supervision, Methodology, Funding acquisition, Data curation, Conceptualization.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (NRF-2022R1A2C2093415), and partially supported by the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2022R1A6C101A751).

References

[1]

H. Yu, Y. Xue, Y. Li, Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications, Adv. Mater., 31 (2019), 1803101.

[2]

P. Sang, X. Ma, Q. Wang, W. Wei, F. Wang, J. Wu, X. Zhan, Y. Li, J. Chen, Toward high-performance monolayer graphdiyne transistor: Strain engineering matters, Appl. Surf. Sci., 536 (2021), 147836.

[3]

A. Mohajeri, A. Shahsavar, Tailoring the optoelectronic properties of graphyne and graphdiyne: Nitrogen/sulfur dual doping versus oxygen containing functional groups, J. Mater. Sci., 52 (2017), pp. 5366-5379.

[4]

J. Zhou, Z. Xie, R. Liu, X. Gao, J. Li, Y. Xiong, L. Tong, J. Zhang, Z. Liu, Synthesis of ultrathin graphdiyne film using a surface template, ACS Appl. Mater. Interfaces, 11 (2019), pp. 2632-2637.

[5]

G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Comm., 46 (2010), pp. 3256-3258.

[6]

T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications, Nat. Photonics, 4 (2010), pp. 297-301.

[7]

M.Q. Long, L. Tang, D. Wang, Y.L. Li, Z.G. Shuai, Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions, ACS Nano, 5 (2011), pp. 2593-2600.

[8]

X. Qian, H. Liu, C. Huang, S. Chen, L. Zhang, Y. Li, J. Wang, Y. Li, Self-catalyzed growth of large-area nanofilms of two-dimensional carbon, Sci. Rep., 5 (2015), p. 7756.

[9]

Y. Pan, Y. Wang, L. Wang, H. Zhong, R. Quhe, Z. Ni, M. Ye, W.N. Mei, J. Shi, W. Guo, J. Yang, J. Lu, Graphdiyne-metal contacts and graphdiyne transistors, Nanoscale, 7 (2015), pp. 2116-2127.

[10]

L. Hui, D. Jia, H. Yu, Y. Xue, Y. Li, Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting, ACS Appl. Mater. Interfaces, 11 (2019), pp. 2618-2625.

[11]

Z. Zuo, H. Shang, Y. Chen, J. Li, H. Liu, Y. Li, Y. Li, A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode, Chem. Comm., 53 (2017), pp. 8074-8077.

[12]

C. Wang, P. Yu, S. Guo, L. Mao, H. Liu, Y. Li, Graphdiyne oxide as a platform for fluorescence sensing, Chem. Comm., 52 (2016), pp. 5629-5632.

[13]

S. Kong, D. Cai, G. Li, X. Xu, S. Zhou, X. Ding, Y. Zhang, S. Yang, X. Zhou, H. Nie, S. Huang, P. Peng, Z. Yang, Hydrogen-substituted graphdiyne/graphene as an sp/sp2 hybridized carbon interlayer for lithium-sulfur batteries, Nanoscale, 13 (2021), pp. 3817-3826.

[14]

J. He, N. Wang, Z. Cui, H. Du, L. Fu, C. Huang, Z. Yang, X. Shen, Y. Yi, Z. Tu, Y. Li, Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries, Nat. Comm., 8 (2017), p. 1172.

[15]

Q. Pan, H. Liu, Y. Zhao, S. Chen, B. Xue, X. Kan, X. Huang, J. Liu, Z. Li, Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration, ACS Appl. Mater. Interfaces, 11 (2019), pp. 2740-2744.

[16]

S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S.J. Kim, G. Venugopal, Graphdiyne-ZnO nanohybrids as an advanced photocatalytic material, J. Phys. Chem. C, 119 (2015), pp. 22057-22065.

[17]

X.P. Yin, S.F. Tang, H.J. Wang, C. Zhang, R. Si, X.L. Lu, T. Lu, Graphdiyne-based Pd single-atom catalyst for semihydrogenation of alkynes to alkenes with high selectivity and conversion under mild conditions, J. Mater. Chem. A, 8 (2020), pp. 20925-20930.

[18]

G. Xu, R. Wang, Y. Ding, Z. Lu, D. Ma, Z. Yang, First-Principles study on the single Ir atom embedded graphdiyne: An efficient catalyst for CO oxidation, J. Phys. Chem. C, 122 (2018), pp. 23481-23492.

[19]

J. Shen, Y. Cai, C. Zhang, W. Wei, C. Chen, L. Liu, K. Yang, Y. Ma, Y. Wang, C.C. Tseng, J.H. Fu, X. Dong, J. Li, X.X. Zhang, L.J. Li, J. Jiang, I. Pinnau, V. Tung, Y. Han, Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes, Nat. Mater., 21 (2022), pp. 1183-1190.

[20]

R. Liu, J. Zhou, X. Gao, J. Li, Z. Xie, Z. Li, S. Zhang, L. Tong, J. Zhang, Z. Liu, Graphdiyne filter for decontaminating lead-ion-polluted water, Adv. Electron. Mater., 3 (2017), p. 1700122.

[21]

H. Kaur, V.K. Thakur, S.S. Siwal, Recent advancements in graphdiyne-based nano-materials for biomedical applications, Materials Today: Proceedings, 56 (2022), pp. 112-120.

[22]

J. Liu, C. Chen, Y. Zhao, Progress and prospects of graphdiyne-based materials in biomedical applications, Adv. Mater., 31 (2019), pp. 1-9.

[23]

T. Yao, R. Wang, Y. Meng, X. Hun, Photoelectrochemical sensing of alpha-synuclein based on a AuNPs/graphdiyne-modified electrode coupled with a nanoprobe, ACS Appl. Mater. Interfaces, 13 (2021), pp. 26515-26521.

[24]

H. Wei, R. Shi, L. Sun, H. Yu, J. Gong, C. Liu, Z. Xu, Y. Ni, J. Xu, W. Xu, Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics, Nat. Comm., 12 (2021), p. 1068.

[25]

N. Parvin, Q. Jin, Y. Wei, R. Yu, B. Zheng, L. Huang, Y. Zhang, L. Wang, H. Zhang, M. Gao, H. Zhao, W. Hu, Y. Li, D. Wang, Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection, Adv. Mater., 29 (2017), 1606755.

[26]

K.N. Pham, D.V. Hoang, T.D. Tran, T.U.T. Doan, P.D. Do, The effect of content and thickness of chitosan thin films on resistive switching characteristics, STDJ, 23 (2020), pp. 632-639.

[27]

Y.Y. Hou, J. Xu, F.T. Wang, Z. Dong, X. Tan, K.J. Huang, J.Q. Li, C.Y. Zuo, S.Q. Zhang, Construction of an integrated device of a self-powered biosensor and matching capacitor based on graphdiyne and multiple signal amplification: Ultrasensitive method for microRNA detection, Anal. Chem., 93 (2021), pp. 15225-15230.

[28]

R. Wang, M. Shi, F. Xu, Y. Qiu, P. Zhang, K. Shen, Q. Zhao, J. Yu, Y. Zhang, Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection, Nat. Comm., 11 (2020), pp. 1-12.

[29]

R. Liu, X. Gao, J. Zhou, H. Xu, Z. Li, S. Zhang, Z. Xie, J. Zhang, Z. Liu, Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil, Adv. Mater., 29 (2017), 1604665.

[30]

C. Yin, J. Li, T. Li, Y. Yu, Y. Kong, P. Gao, H. Peng, L. Tong, J. Zhang, Catalyst-free synthesis of few-layer graphdiyne using a microwave-induced temperature gradient at a solid/liquid interface, Adv. Funct. Mater., 30 (2020), pp. 1-6.

[31]

X. Kan, Y. Ban, C. Wu, Q. Pan, H. Liu, J. Song, Z. Zuo, Z. Li, Y. Zhao, Interfacial synthesis of conjugated two-dimensional N-graphdiyne, ACS Appl. Mater. Interfaces, 10 (2018), pp. 53-58.

[32]

C. Li, X. Lu, Y. Han, S. Tang, Y. Ding, R. Liu, H. Bao, Y. Li, J. Luo, T. Lu, Direct imaging and determination of the crystal structure of six-layered graphdiyne, Nano Res., 11 (2018), pp. 1714-1721.

[33]

J. Jin, M. Guo, J. Liu, J. Liu, H. Zhou, J. Li, L. Wang, H. Liu, Y. Li, Y. Zhao, C. Chen, Graphdiyne nanosheet-based drug delivery platform for photothermal/chemotherapy combination treatment of cancer, ACS Appl. Mater. Interfaces, 10 (2018), pp. 8436-8442.

[34]

Y. Li, Z.C. Zhang, J. Li, X.D. Chen, Y. Kong, F.D. Wang, G.X. Zhang, T.B. Lu, J. Zhang, Low-voltage ultrafast nonvolatile memory via direct charge injection through a threshold resistive-switching layer, Nat. Comm., 13 (2022), p. 4591.

[35]

Y. Li, M. Zhang, X. Hu, X. Li, R. Li, L. Yu, X. Fan, N. Wang, C. Huang, Y. Li, Graphdiyne visible-light photodetector with ultrafast detectivity, Adv. Opt. Mater., 9 (2021), 2001916.

[36]

H. Du, H. Yang, C. Huang, J. He, H. Liu, Y. Li, Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities, Nano Energy, 22 (2016), pp. 615-622.

[37]

W. Hao, X. Su, S. Lu, J. Wang, H. Chen, Q. Chen, B. Wang, X. Kong, C. Jin, G. Han, Z. Han, K. Mullen, Z. Chen, Synthesis and self-assembly of ultrathin holey graphdiyne nanosheets for oxygen reduction reaction, Small, 19 (2023), e2302220.

[38]

L. Lin, H. Pan, Y. Chen, X. Song, J. Xu, H. Liu, S. Tang, Y. Du, N. Tang, Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine, Carbon, 143 (2019), pp. 8-13.

[39]

Y. Li, L. Xu, H. Liu, Y. Li, Graphdiyne and graphyne: From theoretical predictions to practical construction, Chem. Soc. Rev., 43 (2014), pp. 2572-2586.

[40]

H. Yan, P. Yu, G. Han, Q. Zhang, L. Gu, Y. Yi, H. Liu, Y. Li, L. Mao, High-yield and damage-free exfoliation of layered graphdiyne in aqueous phase, Angew. Chem. Int. Ed., 58 (2019), pp. 746-750.

[41]

J. Li, X. Gao, Z. Li, J.H. Wang, L. Zhu, C. Yin, Y. Wang, X.B. Li, Z. Liu, J. Zhang, C.H. Tung, L.Z. Wu, Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity, Adv. Funct. Mater., 29 (2019), 1808079.

[42]

X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang, C. Yin, F. Ding, S. Zhang, X. Yi, J. Wang, L. Tong, Y. Han, Z. Liu, J. Zhang, Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy, Sci. Adv., 4 (2018), p. eaat6378.

[43]

J. Li, L. Zhong, L. Tong, Y. Yu, Q. Liu, S. Zhang, C. Yin, L. Qiao, S. Li, R. Si, J. Zhang, Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction, Adv. Funct. Mater., 29 (2019), 1905423.

[44]

X. Yang, Z. Qu, S. Li, M. Peng, C. Li, R. Hua, H. Fan, J. Caro, H. Meng, Ultra-fast preparation of large-area graphdiyne-based membranes via alkynylated surface-modification for nanofiltration, Angew. Chem. Int. Ed., 62 (2023), e202217378.

[45]

F. Wang, Z. Zuo, H. Shang, Y. Zhao, Y. Li, Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode, ACS Appl. Mater. Interfaces, 11 (2019), pp. 2599-2607.

[46]

Q. Sun, J. He, L. Gao, T. Lu, X. Ma, C. Huang, Synthesis methods of graphdiyne and graphdiyne based materials, Chin. J. Chem., 40 (2022), pp. 872-880.

[47]

D.P. Do, C. Hong, V.Q. Bui, T.H. Pham, S. Seo, V.D. Do, T.L. Phan, K.M. Tran, S. Haldar, B.W. Ahn, S.C. Lim, W.J. Yu, S.G. Kim, J.H. Kim, H. Lee, Highly efficient van der Waals heterojunction on graphdiyne toward the high-performance photodetector, Adv. Sci., 10 (2023), 2300925.

[48]

C. Yin, M. Zhu, Y. Kong, Q. Wang, H. Zhou, L. Qi, L. Tong, J. Zhang, Rapid synthesis of few-layer graphdiyne using radio frequency heating and its application for dendrite-free zinc anodes, 2D Mater, 8 (2021), 044003.

[49]

J. Li, Y. Yi, X. Zuo, B. Hu, Z. Xiao, R. Lian, Y. Kong, L. Tong, R. Shao, J. Sun, Graphdiyne/graphene/graphdiyne sandwiched carbonaceous anode for potassium-ion batteries, ACS nano, 16 (2022), pp. 3163-3172.

[50]

X. Gao, Y. Zhu, D. Yi, J. Zhou, S. Zhang, C. Yin, F. Ding, S. Zhang, X. Yi, J. Wang, L. Tong, Y. Han, Z. Liu, J. Zhang, Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy, Sci. Adv., 4 (2018), pp. 1-7.

[51]

L. Zhang, W. Yi, J. Li, G. Wei, G. Xi, L. Mao, Surfactant-free interfacial growth of graphdiyne hollow microspheres and the mechanistic origin of their SERS activity, Nat. Comm., 14 (2023), p. 6318.

[52]

G. Hu, J. He, J. Chen, Y. Li, Self-assembly of wheel-shaped nanographdiynes and self-template growth of graphdiyne, J. Am. Chem. Soc., 146 (2024), pp. 4123-4133.

[53]

S. Zhang, J. Wang, Z. Li, R. Zhao, L. Tong, Z. Liu, J. Zhang, Z. Liu, Raman spectra and corresponding strain effects in graphyne and graphdiyne, J. Phys. Chem. C, 120 (2016), pp. 10605-10613.

[54]

D.P. Do, V.Q. Bui, M.C. Nguyen, S. Seo, V.D. Do, J. Kim, J. Choi, H. Ko, W.J. Yu, Y. Kawazoe, H. Lee, Insight into facile ion diffusion in resistive switching medium toward low operating voltage memory, Nano Lett., 24 (2024), pp. 7999-8007.

[55]

Z. Yang, X. Shen, N. Wang, J. He, X. Li, X. Wang, Z. Hou, K. Wang, J. Gao, T. Jiu, C. Huang, Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion, ACS Appl. Mater. Interfaces, 11 (2019), pp. 2608-2617.

[56]

Y. Zhao, J. Wan, H. Yao, L. Zhang, K. Lin, L. Wang, N. Yang, D. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H. Zhao, Y. Li, D. Wang, Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis, Nat. Chem., 10 (2018), pp. 924-931.

[57]

Q. Zheng, G. Luo, Q. Liu, R. Quhe, J. Zheng, K. Tang, Z. Gao, S. Nagase, J. Lu, Structural and electronic properties of bilayer and trilayer graphdiyne, Nanoscale, 4 (2012), pp. 3990-3996.

[58]

Q. Yue, S. Chang, J. Kang, S. Qin, J. Li, Mechanical and electronic properties of graphyne and its family under elastic strain: Theoretical predictions, J. Phys. Chem. C, 117 (2013), pp. 14804-14811.

[59]

J. Koo, M. Park, S. Hwang, B. Huang, B. Jang, Y. Kwon, H. Lee, Widely tunable band gaps of graphdiyne: An ab initio study, Phys. Chem. Chem. Phys, 16 (2014), pp. 8935-8939.

[60]

Z. Feng, R. Li, Y. Ma, Y. Li, D. Wei, Y. Tang, X. Dai, Molecule-level graphdiyne coordinated transition metals as a new class of bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions, Phys. Chem. Chem. Phys, 21 (2019), pp. 19651-19659.

[61]

X. Li, Design of novel graphdiyne-based materials with large second-order nonlinear optical properties, J. Mater. Chem. C, 6 (2018), pp. 7576-7583.

[62]

Z.C. Zhang, Y. Li, J.J. Wang, D.H. Qi, B.W. Yao, M.X. Yu, X.D. Chen, T.B. Lu, Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems, Nano Res., 14 (2021), pp. 4591-4600.

[63]

Z.C. Zhang, X.D. Chen, T.B. Lu, Recent progress in neuromorphic and memory devices based on graphdiyne, Sci. Technol. Adv. Mater, 24 (2023), 2196240.

[64]

B.W. Yao, J. Li, X.D. Chen, M.X. Yu, Z.C. Zhang, Y. Li, T.B. Lu, J. Zhang, Non-volatile electrolyte-gated transistors based on graphdiyne/MoS2 with robust stability for low-power neuromorphic computing and logic-in-memory, Adv. Funct. Mater., 31 (2021), 2100069.

[65]

X. Gao, H. Liu, D. Wang, J. Zhang, Graphdiyne: Synthesis, properties, and applications, Chem. Soc. Rev., 48 (2019), pp. 908-936.

[66]

C. Huang, Y. Zhao, Y. Li, Graphdiyne: The fundamentals and application of an emerging carbon material, Adv. Mater., 31 (2019), e1904885.

[67]

Y. Du, W. Zhou, J. Gao, X. Pan, Y. Li, Fundament and application of graphdiyne in electrochemical energy, Acc. Chem. Res., 53 (2020), pp. 459-469.

[68]

F.D. Wang, M.X. Yu, X.D. Chen, J.Q. Li, Z.C. Zhang, Y. Li, G.X. Zhang, K. Shi, L. Shi, M. Zhang, T.B. Lu, J. Zhang, Optically modulated dual-mode memristor arrays based on core-shell CsPbBr@graphdiyne nanocrystals for fully memristive neuromorphic computing hardware, SmartMat, 4 (2023), p. e1135.

[69]

S. Li, Y. Chen, H. Liu, Y. Wang, L. Liu, F. Lv, Y. Li, S. Wang, Graphdiyne materials as nanotransducer for in vivo photoacoustic imaging and photothermal therapy of tumor, Chem. Mater., 29 (2017), pp. 6087-6094.

[70]

H. Zhang, M. Zhao, X. He, Z. Wang, X. Zhang, X. Liu, High mobility and high storage capacity of lithium in sp-sp2 hybridized carbon network: The case of graphyne, J. Phys. Chem. C, 115 (2011), pp. 8845-8850.

[71]

X. Fu, F. He, J. Gao, X. Yan, Q. Chang, Z. Zhang, C. Huang, Y. Li, Directly growing graphdiyne nanoarray cathode to integrate an intelligent solid Mg-moisture battery, J. Am. Chem. Soc., 145 (2023), pp. 2759-2764.

[72]

Y. Kong, X. Qiu, Y. Xue, G. Li, L. Qi, W. Yang, T. Liu, Y. Li, Sulfonic acid-functionalized graphdiyne for effective Li-S battery separators, J. Am. Chem. Soc., 146 (2024), pp. 23764-23774.

[73]

Q. Chang, X. Fu, J. Gao, Z. Zhang, X. Liu, C. Huang, Y. Li, Advanced multilayered electrode with planar building blocks structure for high-performance lithium-ion storage, Adv. Mater., 35 (2023), e2305317.

[74]

Y. Li, D. Kuang, Y. Gao, J. Cheng, X. Li, J. Guo, Z. Yu, Titania:Graphdiyne nanocomposites for high-performance deep ultraviolet photodetectors based on mixed-phase MgZnO, J. Alloys Compd., 825 (2020), 153882.

[75]

Z. Jin, Q. Zhou, Y. Chen, P. Mao, H. Li, H. Liu, J. Wang, Y. Li, Graphdiyne:ZnO nanocomposites for high-performance UV photodetectors, Adv. Mater., 28 (2016), pp. 3697-3702.

[76]

Y. Zhang, P. Huang, J. Guo, R. Shi, W. Huang, Z. Shi, L. Wu, F. Zhang, L. Gao, C. Li, X. Zhang, J. Xu, H. Zhang, Graphdiyne-based flexible photodetectors with high responsivity and detectivity, Adv. Mater., 32 (2020), pp. 1-12.

[77]

M. Zhang, Y. Li, X. Li, N. Wang, C. Huang, Graphdiyne ink for ionic liquid gated printed transistor, Adv. Electron. Mater., 6 (2020), pp. 1-7.

[78]

Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution, Nat. Comm., 9 (2018), p. 1460.

[79]

X. Gao, H. Ren, J. Zhou, R. Du, C. Yin, R. Liu, H. Peng, L. Tong, Z. Liu, J. Zhang, Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation, Chem. Mater., 29 (2017), pp. 5777-5781.

[80]

H. Du, Z. Deng, Z. , Y. Yin, L. Yu, H. Wu, Z. Chen, Y. Zou, Y. Wang, H. Liu, Y. Li, The effect of graphdiyne doping on the performance of polymer solar cells, Synth. Met., 161 (2011), pp. 2055-2057.

AI Summary AI Mindmap
PDF (7062KB)

497

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/