Design strategies, luminescence mechanisms, and solid-state lighting applications of lanthanide-doped phosphorescent materials

Divya Prasanth , D.V. Sunitha , P. Ranjith Kumar , G.P. Darshan

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 108 -123.

PDF (3533KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 108 -123. DOI: 10.1016/j.chphma.2024.09.004
Review Article

Design strategies, luminescence mechanisms, and solid-state lighting applications of lanthanide-doped phosphorescent materials

Author information +
History +
PDF (3533KB)

Abstract

Nanomaterials have emerged as an active area of research. This is because of their broad spectrum of applications such as sensors, white light emitting diodes (LEDs), electronic displays, and other optoelectronic devices in the optics and electronic industries owing to their size- and shape-dependent properties. The synthesis technique plays a crucial role in tuning the size and shape of the materials. Herein, we briefly describe these nanomaterials' fundamental aspects, properties, and applications. Various nanomaterial synthesis methods are discussed. Their advantages and disadvantages are highlighted in conjunction with the criteria for selecting a synthesis method. The principle underlying the sonochemical method and its applicability in synthesizing diverse sub-15 nm size nanoparticles (NPs) are presented. The main objective of this article is to review recent studies on lanthanide-doped nanophosphors and the various parameters that play key roles in achieving optimum luminescence emission. Both down-conversion and up-conversion mechanisms are discussed. The importance of the combinations and concentrations of the synthesizer/activator, color tuning, and host material are emphasized.

Keywords

Photoluminescence / Sonochemical method / Lanthanide doping / Up-conversion / Down-conversion / Multi-color tuning

Cite this article

Download citation ▾
Divya Prasanth, D.V. Sunitha, P. Ranjith Kumar, G.P. Darshan. Design strategies, luminescence mechanisms, and solid-state lighting applications of lanthanide-doped phosphorescent materials. ChemPhysMater, 2025, 4(2): 108-123 DOI:10.1016/j.chphma.2024.09.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Divya Prasanth: Methodology, Conceptualization. D.V. Sunitha: Writing - original draft, Supervision. P. Ranjith Kumar: Validation. G.P. Darshan: Writing - review & editing, Supervision.

References

[1]

V. Singh, P. Yadav, V. Mishra, Recent advances on classification, properties, synthesis, and characterization of nanomaterials, in N. Srivastava, M. Srivastava, P.K. Mishra, V.K. Gupta (Eds.), Green Synthesis of Nanomaterials For Bioenergy Applications, John Wiley & Sons Ltd. (2021), pp. 83-97.

[2]

T.A. Saleh, Nanomaterials: Classification, properties, and environmental toxicities, Env. Tech. Innov., 20 (2020), 101067.

[3]

J. Liu, W. Xue, G. Jin, Z. Zhai, J. Lv, W. Hong, Y. Chen, Preparation of tin oxide quantum dots in aqueous solution and applications in semiconductor gas sensors, Nanomat, 9 (2019), pp. 1-10.

[4]

Y. Wu, R. Wang, Y. Wang, J. Gao, L. Feng, Z. Yang, Distinct impacts of fullerene on cognitive functions of dementia vs. non-dementia mice, Neurotox. Res., 36 (2019), pp. 736-745.

[5]

X. Cai, C. Wang, H. Chen, C. Chien, S. Lai, Y. Chen, T. Hua, I. Kempson, Y. Hwu, C. Yang, G. Margaritondo, Tailored Au nanorods: Optimizing functionality, controlling the aspect ratio and increasing biocompatibility, Nanotechnology, 21 (2010), 335604.

[6]

M.M. Ngoma, M. Mathaba, K. Moothi, Effect of carbon nanotubes loading and pressure on the performance of a polyethersulfone (PES)/carbon nanotubes (CNT) membrane, Sci. Rep., 11 (2021), p. 23805.

[7]

M. Viana, M.C.F.S. Lima, J.C. Forsythe, V.S. Gangoli, Facile graphene oxide preparation by microwave assisted acid method, J. Braz. Chem. Soc., 26 (2015), pp. 978-984.

[8]

H. Shen, H. Wang, H. Yuan, L. Ma, L. Li, Size-, shape-, and assembly-controlled synthesis of Cu2-xSe nanocrystals via a non-injection phosphine-free colloidal method, CrystEngComm., 14 (2012), pp. 555-560.

[9]

J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Progress Mat. Sci., 57 (2012), pp. 724-803.

[10]

D. Coetzee, M. Venkataraman, J. Militky, M. Petru, Influence of nanoparticles on thermal and electrical conductivity of composites, Polymers, 742 (2020), pp. 1-25.

[11]

Z. Zhang, Y. Cong, Y. Huang, X. Du, Nanomaterials-based electrochemical immunosensors, Micromachines, 397 (2019), pp. 1-19.

[12]

K.N. Shinde, S.J. Dhoble, H.C. Swart, K. Park, Basic mechanisms of photoluminescence, In:phosphate phosphors for solid-state lighting, Springer Ser. Mat. Sci., 174 (2012), pp. 41-59.

[13]

Q. Wu, W. Miao, Y. Zhang, H. Gao, D. Hui, Mechanical properties of nanomaterials: A review, Nanotech. Rev., 9 (2020), pp. 259-273.

[14]

A.A. Ghabban, A.B.A. Zubaidi, M. Jafar, Z. Fakhri, Effect of nano SiO2 and nano CaCO3 on the mechanical properties, durability and flowability of concrete, IOP Conf. Series: Mater. Sci. Eng., 454 (2018), pp. 1-10.

[15]

Z. Wang, H. Zeng, L. Sun, Graphene quantum dots: Versatile photoluminescence for energy, biomedical, and environmental applications, J. Mater. Chem. C, 3 (2015), pp. 1157-1165.

[16]

Z. Liang, J. Wu, Y. Cui, Self-optimized single-nanowire photoluminescence thermometry, Light Sci. Appl., 36 (2023), pp. 1-13.

[17]

A. Abdollahi, H. Roghani-Mamaqani, B. Razavi, M. Salami-Kalajahi, Photoluminescent and chromic nanomaterials for anti-counterfeiting technologies: Recent advances and future challenges, ACS Nano, 14 (2020), pp. 14417-14492.

[18]

S. Singh, A. Simantilleke, D. Singh, Synthesis, structural and photoluminescence behaviour of novel La2SiO5:Eu3+/Tb3+ nanomaterials for UV-LEDs, Optik. (Stuttg), 221 (2020), 165324.

[19]

M. De, P.S. Ghosh, V.M. Rotello, Applications of nanoparticles in biology, Adv. Mater., 20 (2008), pp. 4225-4241.

[20]

N. Baig, I. Kammakakam, W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2 (2021), pp. 1821-1871.

[21]

M. Singh, B.M. Taele, M. Goyal, Modeling of size and shape dependent band gap, dielectric constant and phonon frequency of semiconductor nanosolids, Chin. J. Phys., 70 (2021), pp. 26-36.

[22]

S. Joseph, S. Thomas, J. Mohan, A.S. Kumar, S.T. Jayasree, S. Thomas, N. Kalarikkal, Theoretical study on tuning band gap and electronic properties of atomically thin nano-structured MoS2/metal cluster heterostructures, ACS Omega, 6 (2021), pp. 6623-6628.

[23]

O.D. Neikov, N.A. Yefimov, Nanopowders, Handbook of Non-Ferrous Metal Powders, 2nd ed., Elsevier (2019), pp. 271-311.

[24]

R. Geiger, T. Zabel, H. Sigg, Group IV direct band gap photonics: Methods, challenges, and opportunities, Front. Mater. Sec. Optics Photonics, 52 (2015), pp. 1-18.

[25]

T.A. Shifa, A. Gradone, K. Yusupov, K.B. Ibrahim, M. Jugovac, P.M. Sheverdyaeva, J. Rosen, V. Morandi, P. Moras, A. Vomiero, Interfacing CrOx and CuS for synergistically enhanced water oxidation catalysis, Chem. Eng. J., 453 (2023), pp. 1-20.

[26]

R.G. Saratale, I. Karuppusamy, G.D. Saratale, A. Pugazhendhi, G. Kumar, Y. Park, G.S. Ghodake, R.N. Bharagava, J.R. Banu, H.S. Shin, A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications, Colloids Surf., B, 170 (2018), pp. 20-35.

[27]

K.B. Ibrahim, T.A. Shifa, S. Zorzi, M.G. Sendeku, E. Moretti, A. Vomiero, Emerging 2D materials beyond mxenes and TMDs: Transition metal carbo-chalcogenides, Progress Mat. Sci., 144 (2024), pp. 1-28.

[28]

T.P. Yadav, R.M. Yadav, D.P. Singh, Mechanical milling: A top-down approach for the synthesis of nanomaterials and nano-composites, Nanosci. Nanotech., 2 (2012), pp. 22-48.

[29]

M.S. El-Eskandarany, A. Al-Hazza, L.A. Al-Hajji, N. Ali, A.A. Al-Duweesh, M. Banyan, F. Al-Ajmi, Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nano-composite materials, Nanomaterials, 11 (2021), p. 2484.

[30]

M. Khakbiz, F. Akhlaghi, Synthesis and structural characterization of Al-B4C nano-composite powders by mechanical alloying, J. Alloys Comp., 479 (2009), pp. 334-341.

[31]

M. Yusop, D.L. Zhang, M. Wilson, Microstructure and thermal stability of Al2O3-20vol%Fe48Co52 composite powder particles prepared by high energy mechanical milling, IOP Conf. Ser.: Mater. Sci. Eng., 4 (2009), 012016.

[32]

I.S. Thakur, V.S. Pandey, P.S. Rao, S. Tyagi, D. Goyal, Tribological study of mechanically milled graphite nanoparticles co-deposited in electroless Ni-P coatings, Metal Powder Rep., 75 (2020), pp. 344-349.

[33]

V. Mahdikhah, A. Ataie, A. Babaei, S. Sheibani, C.W. Ow- Yang, S.K. Abkenar, Control of structural and magnetic characteristics of cobalt ferrite by post-calcination mechanical milling, J. Phy. Chem. Solids, 134 (2019), pp. 286-294.

[34]

P. Colson, C. Henrist, R. Cloots, Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials, J. Nanomat., 2013 (2013), 948510.

[35]

J.M. Viaña, M. Romero, G. Lozano, H. Míguez, Nano-antennas patterned by colloidal lithography for enhanced nanophosphor light emission, ACS Appl. Nano Mater., 5 (2022), pp. 16242-16249.

[36]

A. Modrić-Šahbazović, M. Novaković, E. Schmidt, I. Gazdić, V. Đokić, D. Peruško, N. Bibić, C. Ronning, Z. Rakočević, Silicon nanostructuring by Ag ions implantation through nanosphere lithography mask, Opt. Mat., 88 (2019), pp. 508-515.

[37]

M. Kim, S. Osone, T. Kim, H. Higashi, T. Seto, Synthesis of nanoparticles by laser ablation: A review, KONA Powder Part. J., 34 (2017), pp. 80-90.

[38]

A. Balachandran, S.P. Sreenilayam, K. Madanan, S. Thomas, D. Brabazon, Nanopproduction via laser ablation synthesis in solution method and printed electronic application - A brief review, Results Eng., 16 (2022), 100646.

[39]

M. Alheshibri, K. Elsayed, S.A. Haladu, S.M. Magami, A.A. Baroot, I. Ercan, F. Ercan, A.A. Manda, E. Çevik, T.S. Kayed, A.A. Alsanea, A.M. Alotaibi, A.L. Al-Otaibi, Synthesis of Ag nanoparticles-decorated on CNTs/TiO2 nanocomposite as efficient photocatalysts via nanosecond pulsed laser ablation, Optics Laser Tech., 155 (2022), 108443.

[40]

O.A. Lazar, C.C. Moise, A.S. Nikolov, L.B. Enache, G.V. Mihai, M. Enachescu, The water-based synthesis of platinum nanoparticles using KrF excimer laser ablation, Nanomat, 12 (2022), p. 348.

[41]

E. Mzwd, N.M. Ahmed, N. Suradi, Green synthesis of gold nanoparticles in Gum Arabic using pulsed laser ablation for CT imaging, Sci. Rep., 12 (2022), p. 10549.

[42]

R. Radičić, D. Maletić, D. Blažeka, J. Car, N. Krstulović, Synthesis of silver, gold, and platinum doped zinc oxide nanoparticles by pulsed laser ablation in water, Nanomaterials, 12 (2022), p. 3484.

[43]

M.G. Sendeku, T.A. Shifa, F.T. Dajan, K.B. Ibrahim, B. Wu, Y. Yang, E. Moretti, A. Vomiero, F. Wang, Frontiers in photoelectrochemical catalysis: A focus on valuable product synthesis, Adv. Mater., 36 (2024), 2308101.

[44]

D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by sol-gel method: Synthesis and application, Adv. Mater. Sci. Eng., 510 (2021), p. 2014.

[45]

J.T. Reiser, J.V. Ryan, N.A. Wall, Sol-gel synthesis and characterization of gels with compositions relevant to hydrated glass alteration layers, ACS Omega, 15 (2019), pp. 16257-16269.

[46]

Y. Shlapa, S. Solopan, A. Belous, Nanoparticles of La1-xSrxMnO3 (0.23 ≤ x ≤ 0.25) manganite: Features of synthesis and crystallochemical properties, J. Magn. and Magn. Mat., 510 (2020), 166902.

[47]

R. Yarbrough, K. Davis, S. Dawood, H. Rathnayake, A sol-gel synthesis to prepare size and shape-controlled mesoporous nanostructures of binary (II-VI) metal oxides, RSC. Adv., 10 (2020), pp. 14134-14146.

[48]

B. Gorji, M.R.A. Ghasri, R. Fazaeli, N. Niksirat, Synthesis and characterizations of silica nanoparticles by a new sol-gel method, J. Appl. Chem. Res., 6 (2012), pp. 22-26.

[49]

T. Dippong, E.A. Levei, I.G. Deac, I. Petean, G. Borodi, O. Cadar, Sol-gel synthesis, structure, morphology and magnetic properties of Ni0.6Mn0.4Fe2O4 nanoparticles embedded in SiO2 matrix, Nanomaterials, 11 (2021), p. 3455.

[50]

S. Lee, I. Cho, J.H. Lee, D.H. Kim, D.W. Kim, J.Y. Kim, H. Shin, J. Lee, H.S. Jung, N. Park, K. Kim, M.J. Ko, K.S. Hong, Two-step sol-gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices, Chem. Mat., 22 (2010), pp. 1958-1965.

[51]

M. Patel, S. Mishra, R. Verma, Synthesis of ZnO and CuO nanoparticles via sol gel method and its characterization by using various technique, Discov. Mater., 2 (2022), pp. 1-11.

[52]

K.B. Ibrahim, T.A. Shifa, P. Moras, E. Moretti, A. Vomiero, Facile electron transfer in atomically coupled heterointerface for accelerated oxygen evolution, Small, 19 (2022), 2204765.

[53]

L.A. Brook, P. Evans, H.A. Foster, M.E. Pemble, A. Steele, D.W. Sheel, H.M. Yates, Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition, J. Photochem. Photobio. A: Chem., 187 (2007), pp. 53-63.

[54]

S. Venkatesan, B. Visvalingam, G. Mannathusamy, Effect of chemical vapor deposition parameters on the diameter of multi-walled carbon nanotubes, Int. Nano Lett., 8 (2018), pp. 297-308.

[55]

E. Navarrete, F. Güell, P.R. Martínez-Alanis, E. Llobet, Chemical vapour deposited ZnO nanowires for detecting ethanol and NO2, J. Alloys Compds., 890 (2022), 161923.

[56]

M. Bahri, S.H. Gebre, M.A. Elaguech, F.T. Dajan, M.G. Sendeku, C. Tlili, D. Wang, Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications, Coordination Chem. Rev., 475 (2023), 214910.

[57]

S.S. Low, M. Yew. C.N. Lim, W.S. Chai, L.E. Low, Manickam S, B.T. Tey, P.L. Show, Sonoproduction of nanobiomaterials - A critical review, Ultrason. Sonochem., 82 (2022), 105887.

[58]

S.A.M. Ealia, M.P. Saravanakumar, A review on the classification, characterization, synthesis of nanoparticles and their application, IOP Conf. Ser. Mater. Sci. Eng., 263 (2017), 032019.

[59]

C.A. Charitidis, P Georgiou, M.A Koklioti, A. Trompeta, V. Markakis, Manufacturing nanomaterials: From research to industry, Manufacturing Rev., 1 (2014), p. 11.

[60]

H.E. Hansen, T.B. Berge, SveinSunde FrodeSeland O.S. Burheim, B.G. Pollet, Towards scaling up the sonochemical synthesis of Pt-nanocatalysts, Ultrason. Sonochem., 103 (2024), pp. 1350-4177.

[61]

Y.K. Kang, J. Kim, K. Darko, S.K. Park, M. Kim, Large-scale sonochemical synthesis of Bi-Sn eutectic alloy nanoparticles, J. Nanosci. Nanotech., 20 (2020), pp. 3201-3205.

[62]

T. Hielscher, Ultrasonic production of nano-size dispersions and emulsions, in: ENS 2005, Paris, France, pp. 138-143..

[63]

S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Recent developments in sonochemical synthesis of nanoporous materials, Molecules, 28 (2023), p. 2639.

[64]

J. Singh, T. Dutta, K.H. Kim, Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation, J. Nanobiotechnol., 16 (2018), p. 84.

[65]

A.B. Patil, B.M. Bhanage, Sonochemistry: A greener protocol for nanoparticles synthesis, in M. Aliofkhazraei (Ed.), Handbook of Nanoparticles, Springer, Cham (2016), pp. 143-166.

[66]

R. Álvarez-Chimal, J.A. Arenas-Alatorre, Arenas-Alatorre, Green synthesis of nanoparticles: A biological approach, in K.J. Shah (Ed.), Green Chemistry for Environmental Sustainability - Prevention-Assurance-Sustainability (P-A-S) Approach, IntechOpen (2023), pp. 1-18.

[67]

B. Savun-Hekimoğlu, A review on sonochemistry and its environmental applications, Acoustics, 2 (2020), pp. 766-775.

[68]

S. Ganguly, P. Das, M. Bose, T.K. Das, S. Mondal, A.K. Das, N.C. Das, Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application, Ultrasonics Sonochem., 39 (2017), pp. 577-588.

[69]

P.A. Bozkurt, Sonochemical green synthesis of Ag/graphene nanocomposite, Ultrason. Sonochem., 35 (Part A) (2017), pp. 397-404.

[70]

B. Nagaraj, K. Mishra, R.S. Thombal, K. Kaliraj, Y.R. Lee, Sonochemical green synthesis of yttrium oxide (Y2O3) nanoparticles as a novel heterogeneous catalyst for the construction of biologically interesting 1,3-Thiazolidin-4-ones, Catal. Lett., 147 (2017), pp. 2630-2639.

[71]

W. Njue, J.K. Kithokoi, J. Mburu, H. Mwangi, Green sonochemical synthesis of silver nanoparticles using adansonia digitata leaves extract and evaluation of their antibacterial potential, Eur. J. Adv. Chem. Res., 1 (2020), pp. 1-7.

[72]

J.A. Fuentes-García, A.C. Alavarse, A.C.M. Maldonado, A. Toro-Córdova, M.R. Ibarra, G.F. Goya, Simple sonochemical method to optimize the heating efficiency of magnetic nanoparticles for magnetic fluid hyperthermia, ACS Omega, 5 (2020), pp. 26357-26364.

[73]

M. Liu, X. Xue, B. Karmakar, W. Eltantawy, A.F. El-kott, E.M. El.Nashar, E.M. Abd-Ella, Sonochemical synthesis of gold nanoparticles mediated by potato starch: Its performance in the treatment of esophageal cancer, Open. Chem., 22 (2024), 20230193.

[74]

D.J. Izzah, N. Nazriati, S. Sumari, Green synthesis of MnO2 nanoparticles with aqueous extract of star apple leaves (Chrysophyllum cainito L.), E3S Web Conf., 481 (2024), p. 05003.

[75]

J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nano-structured materials, Adv. Mater., 22 (2010), pp. 1039-1059.

[76]

Z. Li, T. Zhuang, J. Dong, L. Wang, J. Xia, H. Wang, X. Cui, Z. Wang, Sonochemical fabrication of inorganic nanoparticles for applications in catalysis, Ultrason. Sonochem., 71 (2021), pp. 1-24.

[77]

S. Mosleh, M.R. Rahimi, M. Ghaedi, K. Dashtian, S. Hajati, Sonochemical assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization, Ultrason. Sonochem., 40 (2018), pp. 601-610.

[78]

J. Singh, T. Dutta, K.H. Kim, Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation, J. Nanobiotechnol., 16 (2018), p. 84.

[79]

R.S. Yadav, P. Mishra, A.C. Pandey, Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method, Ultrason. Sonochem., 15 (2008), pp. 863-868.

[80]

O. Amiri, S.M. Hosseinpour-Mashkani, M.M. Rad, F. Abdvali, Sonochemical synthesis and characterization of CdS/ZnS core-shell nanoparticles and application in removal of heavy metals from aqueous solution, Superlattices. Microstruct., 66 (2014), pp. 67-75.

[81]

N.F.A. Neto, J.M.P. Silva, R.L. Tranquilin, E. Longo, J.F.M. Domenegueti, M.R.D. Bomio, F.V. Motta, Photoluminescent properties of Sm3+ and Tb3+ co-doped CaWO4 nanoparticles obtained by a one-step sonochemical method, J. Mater. Sci.: Mater. Electron., 31 (2020), pp. 13261-13272.

[82]

M.A.S. Amulya, H.P. Nagaswarupa, M.R.A. Kumar, C.R. Ravikumar, K.B. Kusuma, S.C. Prashantha, Evaluation of bifunctional applications of CuFe2O4 nanoparticles synthesized by a sonochemical method, J. Phy. Chem. Solids, 148 (2021), 109756.

[83]

S. Yazdani-Darki, M. Eslami-Kalantari, H. Zare, Study of double-using ultrasonic effects on the structure of PbO nanorods fabricated by the sonochemical method, Ultrason. Sonochem., 79 (2021), 105797.

[84]

N. Karikalan, R. Karthik, S. Chen, C. Karuppiah, A. Elangovan, Sonochemical synthesis of sulfur doped reduced graphine oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications, Sci. Rep., 7 (2017), p. 2494.

[85]

A. Ramadoss, S.J. Kim, Synthesis and characterization of HfO2 nanoparticles by sonochemical approach, J. Alloys Compd., 544 (2012), pp. 115-119.

[86]

L. Obreja, N. Foca, M.I. Popa, V. Melnig, Alcoholic reduction platinum nanoparticles, synthesis by sonochemical method, Biomater. Biophys. Medical Phys. Ecol., 235431873 (2008), pp. 31-36.

[87]

B. Calderón-Jiménez, A.R. Montoro-Bustos, R. Pereira-Reyes, Novel pathway for the sonochemical synthesis of silver nanoparticles with near-spherical shape and high stability in aqueous media, Sci. Rep., 12 (2022), p. 882.

[88]

J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken, A novel sonochemical method for the preparation of nanophasicsulphides: Synthesis of HgS and PbS nanoparticles, J. Solid State Chem., 153 (2000), pp. 342-348.

[89]

S.M. Hosseinpour-Mashkani, M. Ramezani, M. Vatanparast, Synthesis and characterization of lead selenide nanostructure through simple sonochemical method in the presence of novel precursor, Mater. Sci. Semicond. Proc., 26 (2014), pp. 112-118.

[90]

M.A.S. Amulya, H.P. Nagaswarupa, M.R. Anil Kumar, C.R. Ravikumar, S.C. Prashantha, K.B. Kusuma, Sonochemical synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications, Appl. Surf. Sci. Adv., 1 (2020), 100023.

[91]

S. Aliramaji, A. Zamanian, Z. Sohrabijam, Characterization and synthesis of magnetite nanoparticles by innovative sonochemical method, Procedia Mat. Sci., 11 (2015), pp. 265-269.

[92]

V. Bedekar, D.P. Dutta, M. Mohapatra, S.V. Godbole, R. Ghildiyal, A.K. Tyagi, Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs, Nanotechnology, 20 (2009), 125707.

[93]

S. Sekar, N. Kaur, S. Lee, D.Y. Kim, Rapid sonochemical synthesis of spherical silica nanoparticles derived from brown rice husk, Ceramics Int., 44 (2018), pp. 8720-8724.

[94]

C.H. Pérez-Beltrán, J.J. García-Guzmán, B. Ferreira, O. Estévez-Hernández, D. López-Iglesias, L. Cubillana-Aguilera, W. Link, N. Stănică, A.M. Rosa da Costa, J.M. Palacios-Santander, One-minute and green synthesis of magnetic iron oxide nanoparticles assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation, Mat. Sci. Eng. C, 123 (2021), 112023.

[95]

V.B. Kumar, L. Gouda, Z. Porat, A. Gedanken, Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications, Ultrason. Sonochem., 32 (2016), pp. 54-59.

[96]

D.M.A. Neto, R.M. Freire, J. Gallo, T.M. Freire, D.C. Queiroz, N.M.P.S. Ricardo, I.F. Vasconcelos, G. Mele, L. Carbone, S.E. Mazzetto, M. Bañobre-López, P.B.A. Fechine, Rapid sonochemical approach produces functionalized Fe3O4 nanoparticles with excellent magnetic, colloidal, and relaxivity properties for MRI application, J. Phy. Chem. C, 121 (2017), pp. 24206-24222.

[97]

D. Manoharan, A. Loganathan, V. Kurapati, V.J. Nesamony, Unique sharp photoluminescence of size-controlled sonochemically synthesized zirconia nanoparticles, Ultrason. Sonochem., 23 (2015), pp. 174-184.

[98]

D.P. Dutta, V. Sudarsan, P. Srinivasu, A. Vinu, A.K. Tyagi, Indium oxide and europium/dysprosium doped indium oxide nanoparticles: Sonochemical synthesis, characterization, and photoluminescence studies, J. Phys. Chem. C, 112 (2008), pp. 6781-6785.

[99]

J. Zhu, Y. Koltypin, A. Gedanken, General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe nanoparticles, Chem. Mater., 12 (2000), pp. 73-78.

[100]

A.A. Othman, M.A. Osman, M.A. Ali, Sonochemically synthesized Ni-doped ZnS nanoparticles: structural, optical, and photocatalytic properties, J. Mater. Sci.: Mater. Electron., 31 (2020), pp. 1752-1767.

[101]

J. Geng, J. Zhang, J. Hong, J. Zhu, Sonochemical synthesis of PbWO4 nanoparticles, Int. J. Mod. Phys. B, 19 (2005), pp. 2734-2739.

[102]

C. Karunakaran, S.S. Raadha, P. Gomathisankar, Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles, J. Alloys Compd., 549 (2013), pp. 269-275.

[103]

C.D. Trinh, P.T.P. Hau, T.M.D. Dang, C.M. Dang, Sonochemical synthesis and properties of YVO4: Eu3+ nanocrystals for luminescent security ink applications, J. Chem., 5385 (2019), pp. 1-13.

[104]

K.S. Suslick, Sonochemistry, Science, 247 (1990), pp. 1439-1445.

[105]

J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nano-structured materials, Adv. Mater., 22 (2010), pp. 1039-1059.

[106]

K.S. Suslick, S.J. Doktycz, E.B. Flint, On the origin of sonoluminescence and sonochemistry, Ultrasonics, 28 (1990), pp. 280-290.

[107]

H. Xu, B.W. Zieger, K.S. Suslick, Sonochemical synthesis of nanomaterials, Chem. Soc. Rev., 42 (2013), pp. 2555-2567.

[108]

K.S. Suslick, G.J. Price, Applications of ultrasound to materials chemistry, Annu. Rev. Mater: Sci., 29 (1999), pp. 295-326.

[109]

Z. Li, J. Dong, H. Zhang, Y. Zhang, H. Wang, X. Cui, Z. Wang, Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics, Nanoscale Adv., 3 (2021), pp. 41-72.

[110]

N. Pokhrel, P.K. Vabbina, N. Pala, Sonochemistry: Science and engineering, Ultrason. Sonochem., 29 (2016), pp. 104-128.

[111]

S.S. Low, M. Yew, C.N. Lim, W.S. Chai, L.E. Low, S. Manickam, B.T. Tey, P.L. Show, Sonoproduction of nanobiomaterials - A critical review, Ultrason. Sonochem., 82 (2022), 105887.

[112]

S.K. Gupta, M.A.P. Garcia, J.P. Zuniga, M. Abdou, Y. Mao, Visible and ultraviolet upconversion and near infrared downconversion luminescence from lanthanide doped La2Zr2O7 nanoparticles, J. Lumin., 214 (2019), 116591.

[113]

S. Gai, C. Li, P. Yang, J. Lin, Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties and biomedical applications, Chem. Rev., 114 (2014), pp. 2343-2389.

[114]

B. Kalaburgi, B.D. Prasad, D.R. Lavanya, G.P. Darshan, V.C.V. Gowda, N. Hanumantharaju, A. Venkatesulu, M.N. Taj M, S.C. Sharma, H. Nagabhushana, Nanocomposites of PVA/chitosan blend with BiOCl:Eu3+ prepared by sonochemical route: Forensic and optoelectronics applications, Colloid Surf. A, 657 (2023), 130446.

[115]

H.J.A. Yadav, B. Eraiah, H. Nagabhushana, G.P. Darshan, B.D. Prasad, M.K. Sateesh, S.C. Sharma, P. Hema Prabha, Bio-inspired ultrasonochemical synthesis of blooming flower like ZnO hierarchical architectures and their excellent biostatic performance, J. Sci.: Adv. Mat. Dev., 2 (2017), pp. 455-469.

[116]

S.K. Gupta, J.P. Zuniga, M. Abdoua, M.P. Thomas, M.D.A. Goonatilleke, B.S. Guiton, M. Yuanbing, Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators, Chem. Eng. J., 379 (2020), 122314.

[117]

C.W. Park, D.J. Park, Development of Er3+, Yb3+ Co-Doped Y2O3 NPs according to Yb3+concentration by LP-PLA method, potential further biosensor, Biosensors, 11 (2021), p. 150.

[118]

D. Kim, Recent developments in lanthanide-doped alkaline earth aluminate phosphors with enhanced and long-persistent luminescence, Nanomaterials, 11 (2021), p. 723.

[119]

V.A. Medvedev, I.E. Kolesnikov, P.K. Olshin, M.D. Mikhailov, A.A. Manshina, D.V. Mamonova, Photoluminescence and energy transfer in double- and triple-lanthanide-doped YVO4 nanoparticles, Materials, 15 (2022), p. 2637.

[120]

T.T. Ngo, E. Cabello-Olmo, E. Arroyo, A.I. Becerro, M. Ocana, G. Lozano, H. Miguez, Highly versatile upconverting oxyfluoride-based nanophosphor films, ACS Appl. Mater. Interfaces, 13 (2021), pp. 30051-30060.

[121]

G.M. Gurgel, L.X. Lovisa, L.M. Pereira, F.V. Motta, M.S. Li, E. Logo, C.A. Paskocimas, M.R.D. Bomio, Photoluminescence properties of (Eu, Tb, Tm) co-doped PbMoO4 obtained by sonochemical synthesis, J. Alloys Compd., 700 (2017), pp. 130-137.

[122]

T. Alammar, J. Cybinska, P.S. Campbell, A. Mudring, Sonochemical synthesis of highly luminescent Ln2O3:Eu3+ (Y, La, Gd) nanocrystals, J. Lumin., 169 (2016), pp. 587-593.

[123]

B.K. Gupta, D. Haranath, S. Saini, V.N. Singh, V. Shanker, Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications, Nanotech, 21 (2010), 055607.

[124]

M. Zhang, W. Zheng, Y. Liu, P. Huang, Z. Gong, J. Wei, Y. Gao, S. Zhou, X. Li, X. Chen, A new class of blue-LED-excitable NIR-II luminescent nanoprobes based on lanthanide-doped CaS nanoparticles, Angew. Chem. Int. Ed., 5828 (2019), pp. 9556-9560.

[125]

T.N.L. Tran, A. Szczurek, A. Lukowiak, A. Chiasera, A review on rare-earth activated SnO2-based photonic structures: Synthesis, fabrication and photoluminescence properties, Opt. Mater. X, 13 (2022), 100140.

[126]

D. Sarkar, S. Ganguli, T. Samanta, V. Mahalingam, Design of lanthanide-doped colloidal nanocrystals: Applications as phosphors, sensors, and photocatalysts, Langmuir, 35 (2019), pp. 6211-6230.

[127]

L. Liu, N. Zhang, Z. Leng, Y. Liang, R. Li, L. Zou, S. Gan, Highly bright multi-colour emission through energy migration in core/shell nanotubes, Dalton. Trans., 44 (2015), pp. 6645-6654.

[128]

T. Samanta, S. Sarkar, V.N.K.B. Adusumalli, A.E. Praveen, V. Magalingam, Enhanced visible and near infrared emissions via Ce3+ to Ln3+ energy transfer in Ln3+-doped CeF3 nanocrystals (Ln = Nd and Sm), Dalton. Trans., 45 (2016), pp. 78-84.

[129]

N.X. Ca, N.D. Vinh, S. Bharti, P.M. Tan, N.T. Hien, V.X. Hoa, Y. Peng, P.V. Do, Optical properties of Ce3+ and Tb3+ co-doped ZnS quantum dots, J. Alloys Compd., 883 (2021), 160764.

[130]

A. Schroter, S. Märkl, N. Weitzel, T. Hirsch, Upconversion nanocrystals with high lanthanide content: Luminescence loss by energy migration versus luminescence enhancement by increased NIR absorption, Adv. Funct. Mat., 32 (2022), 2113065.

[131]

A. De, B. Samanta, A.K. Dey, N. Chakraborty, T.K. Parya, S. Saha, U.K. Ghorai, ZnAl2O4:Eu3+ nanoparticle phosphors co-doped with Li+ for red light-emitting diodes, ACS Appl. Nano Mater., 5 (2022), pp. 331-340.

[132]

Z. Xu, C. Li, D. Yang, W. Wang, X. Kang, M. Shang, J. Lin, Self-templated and self-assembled synthesis of nano/microstructures of Gd-based rare-earth compounds: Morphology control, magnetic and luminescence properties, Phys. Chem. Chem. Phys., 12 (2010), pp. 11315-11324.

[133]

Y. Ding, Z. Li, Tuning the photoluminescence properties of β-NaYF4:Yb,Er by Bi3+ doping strategy, Crystal Res. Tech., 57 (2022), 2100163.

[134]

K. Mishra, S.K. Singh, A.K. Singh, S.B. Rai, Frequency upconversion in Er3+ doped Y2O3 nanophosphor:Yb3+ sensitization and tailoring effect of Li+ ion, Mats. Res. Bul., 48 (2013), pp. 4307-4313.

[135]

S. Liu, Z. An, B. Zhou, Optical multiplexing of upconversion in nanoparticles towards emerging applications, Chem. Eng. J., 452 (2023), 139649.

[136]

B.O. Zhou, B. Shi, D. Jin, X. Liu, Controlling upconversion nanocrystals for emerging applications, Nat. Nanotechnol., 10 (2015), pp. 924-936.

[137]

C. Li, X. Li, X. Liu, Tuning luminescence of lanthanide-doped upconversion nanoparticles through simultaneous binary cation exchange, ACS Appl. Mater. Interfaces, 14 (2022), pp. 10947-10954.

[138]

P. Serna-Gallén, H. Beltrán-Mir, E. Cordoncillo, Tuning the optical and photoluminescence properties of highly efficient Eu3+-doped KY3F10 phosphors by different synthetic approaches, Opt. Laser Technol., 136 (2021), 106734.

[139]

R. Reisfeld, M. Eyal, Possible ways of relaxations for excited states of rare-earth ions in amorphous media, J. Phys. Colloques, 46 (1985), pp. 349-355.

[140]

K.K. Pukhov, T.T. Basiev, Y.V. Orlovskii, M. Glasbeekb, Multi-phonon relaxation of the electronic excitation energy of rare-earth ions in laser crystals, J. Lumin., 76 (1998), pp. 586-590.

[141]

Z. Zhang, A. Skripka, J.C. Dahl, C. Dun, J.J. Urban, D. Jaque, P.J. Schuck, B.E. Cohen, E.M. Chan, Tuning phonon energies in lanthanide-doped potassium lead halide nanocrystals for enhanced nonlinearity and upconversion, Angew. Chem. Int. Ed., 62 (2022), e202212549.

[142]

H. Wang, X. Hong, R. Han, J. Shi, Z. Liu, S. Liu, Y. Wang, Y. Gan, Triple-doped KMnF3:Yb3+/Er3+/Tm3+ nanocubes: Four-color upconversion emissions with strong red and near-infrared bands, Sci. Rep., 5 (2015), p. 17088.

[143]

S. Ye, M. Zhao, J. Song, J. Qu, Core-shell structured NaMnF3: Yb, Er nanoparticles for bioimaging applications, RSC. Adv., 7 (2017), pp. 52588-52594.

[144]

K.R. Ashwini, H.B. Premkumar, G.P. Darshan, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, H.P. Nagaswarupa, Synthesis and photometric properties of SrAl2O4: Gd3+ nanophosphors via solution combustion method, Mat. Today Proc., 4 (2017), pp. 12168-12173.

[145]

N.F. Atta, A. Galal, E.H. El-Ads, Perovskite nanomaterials - Synthesis, characterization, and applications, in L. Pan, G. Zhu (Eds.), Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, IntechOpen (2016), pp. 107-151.

[146]

Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Zhang, J. Xu, B. Huang, F. Luo, Y. Du, C. Yan, Rare-earth-containing perovskite nanomaterials: Design, synthesis, properties and applications, Chem. Soc. Rev., 49 (2020), pp. 1109-1143.

[147]

A.G. Bispo-Jr, A.J. C.M.S. Calado, I.O. Mazali, F.A. Sigoli, Lanthanide-doped luminescent perovskites: A review of synthesis, properties, and applications, J. Lumin., 252 (2022), 119406.

[148]

G.P. Darshan, A. Arjun, H.B. Premkumar, G. Tamilarasu, S.C. Sharma, H. Nagabhushana, S.O. Manjunatha, Double perovskite structured Ca2MgWO6:Sm3+ nanophosphor: Tailored for future-generation WLEDs and dosimetry applications, J. Alloys Compd., 960 (2023), 170662.

[149]

H.B. Premkumar, A. Arjun, M.V. Sharvani, S.C. Sharma, H. Nagabhushana, G.P. Darshan, Realization of orange-red emitting double perovskite structured Sm3+-doped Ba2ZnWO6 nanophosphors: A systematic study of structural, photoluminescence and photometric properties for solid-state lighting applications, Inorganic Chem. Comm., 158 (2023), 111637.

[150]

C. Darshan, A. Arjun, H.B. Premkumar, G.P. Darshan, S.C. Sharma, H. Nagabhushana, Tailoring robust luminescent-based BaSrY4O8: Eu3+ platform opens new avenues for screening diverge surface prompted cheiloscopy, WLED's, and dosimetric applications, Mat. Today Sustain., 24 (2023), 100594.

[151]

F. Schmitz, K. Guo, J. Horn, R. Sorrentino, G. Conforto, F. Lamberti, R. Brescia, F. Drago, M. Prato, Z. He, U. Giovanella, F. Cacialli, D. Schlettwein, D. Meggiolaro, T. Gatti, Lanthanide-induced photoluminescence in lead-free Cs2AgBiBr6 bulk perovskite: Insights from optical and theoretical investigations, J. Phys. Chem. Lett., 11 (2020), pp. 8893-8900.

[152]

C.G. Pérez-Hernández, R. Sánchez-Zeferino, U. Salazar-Kuri, M.E. Álvarez-Ramos, Fabrication, structural properties, and tunable light emission of Sm3+, Tb3+ co-doped SrSnO3 perovskite nanoparticles, Chem. Phy., 551 (2021), 111324.

[153]

I. Gupta, P. Kumar, S. Singh, S. Bhagwan, V. Kumar, D. Singh, Phase recognition, structural measurements and photoluminescence studies of reddish-orange-emissive YAlO3:Sm3+ perovskite nanophosphors for NUV energized WLEDs, J. Mol. Struct., 1267 (2022), 133567.,

AI Summary AI Mindmap
PDF (3533KB)

338

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/