Synthesis of copper-containing metal-polymer nanocomposites and their use as a humidity sensor

Igor E. Uflyand , Vladimir A. Zhinzhilo , Tatjana V. Lifintseva

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 150 -164.

PDF (4461KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 150 -164. DOI: 10.1016/j.chphma.2024.09.003
Research Article

Synthesis of copper-containing metal-polymer nanocomposites and their use as a humidity sensor

Author information +
History +
PDF (4461KB)

Abstract

Recently, the synthesis of new gas-sensitive materials for use in resistive humidity sensors has attracted considerable interest. In the study, copper-containing metal-polymer nanocomposites were obtained by thermolysis of copper fumarate (I) and its complexes with 2,2′-dipyridyl (II) and 1,10-phenanthroline (III). The nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, elemental analysis, energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The most common particle sizes of the thermolysis products of compounds I, II, and III were 18.7, 8.3, and 20.7 nm, respectively. The manufactured sensor samples exhibited good sensitivity to the relative humidity (RH) of air: 2.48%/%RH, 3.77%/%RH, and 3.11%/%RH for the thermolysis products of compounds I, II, and III, respectively. Because of the high porosity and moisture absorption of the film, the maximum sensitivity was approximately 0.005 MΩ/%RH, which indicates fairly effective behavior of the film with respect to humidity. The response and recovery times were 23.7, and 37.3 s; 24.7, and 35.8 s; 32.4, and 58.4 s, respectively. The experiment had 88%-97% reproducibility. The fabricated sensors have great potential as humidity-sensing elements for humidity monitoring.

Keywords

Copper complexes / Metal-polymer nanocomposites / Thermolysis / Humidity sensors

Cite this article

Download citation ▾
Igor E. Uflyand, Vladimir A. Zhinzhilo, Tatjana V. Lifintseva. Synthesis of copper-containing metal-polymer nanocomposites and their use as a humidity sensor. ChemPhysMater, 2025, 4(2): 150-164 DOI:10.1016/j.chphma.2024.09.003

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Igor E. Uflyand: Project administration. Vladimir A. Zhinzhilo: Visualization. Tatjana V. Lifintseva: Investigation.

Acknowledgements

This study was funded by the Russian Science Foundation (Project No. 22–13–00260).

References

[1]

G.I. Dzhardimalieva, I.E. Uflyand, Conjugated thermolysis of metal-containing monomers: Toward core-shell nanostructured advanced materials, J. Inorg. Organomet. Polym. Mater., 30 (2020), pp. 88-110, doi: 10.1007/s10904-019-01275-0.

[2]

N. Baig, I. Kammakakam, W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2 (2021), pp. 1821-1871, doi: 10.1039/D0MA00807A.

[3]

B. Mekuye, B. Abera, Nanomaterials: An overview of synthesis, classification, characterization, and applications, Nano Select, 4 (2023), pp. 486-501, doi: 10.1002/nano.202300038.

[4]

N.M. Noah, Design and synthesis of nanostructured materials for sensor applications, J. Nanomater., 2020 (2020), 8855321, doi: 10.1155/2020/8855321.

[5]

H.M. Saleh, A.I. Hassan, Synthesis and characterization of nanomaterials for application in cost-effective electrochemical devices, Sustainability, 15 (2023), p. 10891, doi: 10.3390/su151410891.

[6]

C. Xu, P.R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis, Chem. Soc. Rev., 48 (2019), pp. 3868-3902, doi: 10.1039/C9CS00102F.

[7]

O.V. Kharissova, L.M. Torres-Martínez, B.I. Kharisov(Eds.), Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Springer, Cham (2020).

[8]

B.I. Kharisov, O.V. Kharissova, H.V. Rasika Dias(Eds.), Nanomaterials For Environmental Protection, Wiley, Dordrecht (2014).

[9]

S. Kulkarni, B. Kharisov, A.K. Haghi, V. Srivastava(Eds.), Next Generation Materials For Sustainable Engineering, IGI Global (2024).

[10]

G.I. Dzhardimalieva, I.E. Uflyand, Design and synthesis of coordination polymers with chelated units and their application in nanomaterials science, RSC Adv., 7 (2017), pp. 42242-42288, doi: 10.1039/C7RA05302A.

[11]

D. Yang, Y. Chen, Z. Su, X. Zhang, W. Zhang, K. Srinivas, Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation, Coord. Chem. Rev., 428 (2021), p. 21361, doi: 10.1016/j.ccr.2020.213619.

[12]

B.A. Kuzubasoglu, Recent studies on the humidity sensor: A mini review, ACS Appl. Electron. Mater., 4 (2022), pp. 4797-4807, doi: 10.1021/acsaelm.2c00721.

[13]

X. Rao, L. Zhao, L. Xu, Y. Wang, K. Liu, Y. Wang, G.Y. Chen, T. Liu, Y. Wang, Review of optical humidity sensors, Sensors, 21 (2021), p. 8049, doi: 10.3390/s21238049.

[14]

J. Chunghwan, K. Soo-Jung, K. Joo Hwan, K. Doa, K. Byoungsu, S. Young, H. Sung-Hoon, R. Junsuk, Disordered-nanoparticle-based etalon for ultrafast humidity-responsive colorimetric sensors and anti-counterfeiting displays, Sci. Adv., 8 (2022), p. 8598 eabm, doi: 10.1126/sciadv.abm859.

[15]

С. He, S. Korposh, R. Correia, L. Liu, B.R. Hayes-Gill, S.P. Morgan, Optical fibre sensor for simultaneous temperature and relative humidity measurement: Towards absolute humidity evaluation, Sens. Actuators B: Chem., 344 (2021), 130154, doi: 10.1016/j.snb.2021.130154.

[16]

K. Xu, H. Li, Y. Liu, Y. Wang, J. Du, Z. He, Q. Song, Optical fiber humidity sensor based on water absorption peak near 2-µm waveband, IEEE, Photonics J, 11 (2019), 7101308, doi: 10.1109/JPHOT.2019.2901290.

[17]

Z. Zhang, H. Gong, C. Yu, K. Ni, C. Zhao, An optical fiber humidity sensor based on femtosecond laser micromachining Fabry-Perot cavity with composite film, Opt. Laser Technol., 150 (2022), 107949, doi: 10.1016/j.optlastec.2022.107949.

[18]

Z. Ma, T. Fei, T. Zhang, An overview: Sensors for low humidity detection, Sens. Actuators B: Chem., 376 (2023), 133039 Part B, doi: 10.1016/j.snb.2022.133039.

[19]

S.B. Khan, M.T.S. Chani, Kh.S. Karimov, A.M. Asiri, M. Bashir, R. Tariq, Humidity and temperature sensing properties of copper oxide-Si-adhesive nanocomposite, Talanta, 120 (2014), pp. 443-449, doi: 10.1016/j.talanta.2013.11.089.

[20]

A. Kumar, G. Gupta, K. Bapna, D.D. Shivagan, Semiconductor-metal-oxide-based nano-composites for humidity sensing applications, Mater. Res. Bull., 158 (2023), 112053, doi: 10.1016/j.materresbull.2022.112053.

[21]

Z. Wang, Y. Xiao, X. Cui, P. Cheng, B. Wang, Y. Gao, X. Li, T. Yang, T. Zhang, G. Lu, Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide, ACS Appl. Mater. Interfaces, 6 (2014), pp. 3888-3895, doi: 10.1021/am404858z.

[22]

A.S. Brichkov, S.A. Kuznetsova, E.A. Mongush, V.U. Brichkova, A.V. Zabolotskaya, T.S. Glazneva, Formation of Zn- and Si-based oxide systems: Analysis of temperature dependence of the energy state, Catal. Sustain. Energy, 5 (2018), pp. 28-33, doi: 10.1515/cse-2018-0004.

[23]

J. Wang, W. Zeng, Research progress on humidity-sensing properties of Cu-Based humidity sensors: A review, J. Sens., 2022 (2022), 7749890, doi: 10.1155/2022/7749890.

[24]

I. Popov, Z. Zhu, A.R. Young-Gonzales, R.L. Sacci, E. Mamontov, C. Gainaru, S.J. Paddison, A.P. Sokolov, Search for a Grotthuss mechanism through the observation of proton transfer, Commun. Chem., 6 (2023), p. 77, doi: 10.1038/s42004-023-00878-6.

[25]

E. Ciftyurek, Z. Li, K. Schierbaum, Adsorbed oxygen ions and oxygen vacancies: their concentration and distribution in metal oxide chemical sensors and influencing role in sensitivity and sensing mechanisms, Sensors, 23 (2023), p. 29, doi: 10.3390/s23010029.

[26]

Y. Yang, G. Su, Q. Li, Z. Zhu, S. Liu, B. Zhuo, X. Li, P. Ti, Q. Yuan, Performance of the highly sensitive humidity sensor constructed with nanofibrillated cellulose/graphene oxide/polydimethylsiloxane aerogel via freeze drying, RSC Adv., 11 (2021), pp. 1543-1552, doi: 10.1039/D0RA08193K.

[27]

S. Sikarwar, A. Pandey, A. Singh, B.C. Yadav, I.E. Uflyand, G.I. Dzhardimalieva, Synthesis of La2O3-Cr2O3-SrO nanocomposite by pyrolysis of metal carboxylates; its characterization, DFT studies and significance in humidity sensing, Mater. Sci. Eng. B, 283 (2022), 115813, doi: 10.1016/j.mseb.2022.115813.

[28]

L.K. Gupta, K. Kumar, B.C. Yadav, T.P. Yadav, G.I. Dzhardimalieva, I.E. Uflyand, Shripal, Comparative study on humidity sensing abilities of synthesized mono and poly rhodium acryl amide tin oxide (RhAAm/SnO2) nanocomposites, Sens. Actuators A: Phys., 330 (2021), 112839, doi: 10.1016/j.sna.2021.112839.

[29]

P. Chaudhary, D.K. Maurya, R.K. Tripathi, B.C. Yadav, N.D. Golubeva, E.I. Knerelman, I.E. Uflyand, G.I. Dzhardimalieva, The synthesis of a Cu0.8Zn0.2Sb2-polyacrylamide nanocomposite by frontal polymerization for moisture and photodetection performance, Mater. Adv., 1 (2020), pp. 2804-2817, doi: 10.1039/D0MA00389A.

[30]

G.I. Dzhardimalieva, I.E. Uflyand, V.A. Zhinzhilo, Metal-polymer nanocomposites based on metal-containing monomers, Russ. Chem. Bull., 71 (2022), pp. 2052-2075, doi: 10.1007/s11172-022-3628-6.

[31]

P. Chaudhary, S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, N.D. Golubeva, I.E. Uflyand, Synthesis and characterization of copper (II) nitrate polyacrylamide & its application as opto-electronic humidity sensor, Sens. Actuators A: Phys., 263 (2017), pp. 415-422, doi: 10.1016/j.sna.2017.07.006.

[32]

D.A. Loris, T.T.D. Raoul, A.D. Cyrille, K.T. Idris-Hermann, D. Giscard, T.D.A. Clovis, A.S. Gabche, N. Jean, Kinetic and isotherm studies of the adsorption phenacetin onto two copper porous coordination compounds: nonlinear regression analysis, J. Chem., 2022 (2022), 2828860, doi: 10.1155/2022/2828860.

[33]

Y.Y. Wang, X. Wang, Q.Z. Shi, Y.C. Gao, A novel binuclear copper(II) complex with fumarate and 1,10-phenanthroline, Transition Met. Chem., 27 (2002), pp. 481-484, doi: 10.1023/A:1015617327024.

[34]

L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, J. Res. Natl. Bur. Stand. A Phys. Chem., 81A (1977), pp. 89-96, doi: 10.6028/jres.081A.011.

[35]

I.S. Yakubu, U. Muhammad, A.A. Muhammad, Humidity sensing study of polyaniline/copper oxide nanocomposites, Int. J. Adv. Acad. Res., 4 (2018), pp. 49-61.

[36]

Y. Wang, S. Park, J.TJ.T W. Yeow, A. Langner, F. Muller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating, Sens. Actuators B: Chem., 149 (2010), pp. 136-142, doi: 10.1016/j.snb.2010.06.010.

[37]

N. Parimon, M.H. Mamat, M.K. Ahmad, I.B. Shameem Banu, M. Rusop, Highly porous NiO nanoflower-based humidity sensor grown on seedless glass substrate via one-step simplistic immersion method, Int. J. Eng. Adv. Technol. (IJEAT), 9 (2019), p. 5718, doi: 10.35940/ijeat.A3052.109119.

[38]

N. Parimon, M.H. Mamat, I.S. Banu, N. Vasimalai, M.K. Ahmad, A.B. Suriani, A. Mohamed, M. Rusop, Annealing temperature dependency of structural, optical and electrical characteristics of manganese-doped nickel oxide nanosheet array films for humidity sensing applications, Nanomater. Nanotechnol., 11 (2021), p. 1, doi: 10.1177/1847980420982788.

[39]

H. Parangusan, J. Bhadra, Z. Ahmad, S. Mallick, F. Touati, N. Al-Thani, Humidity sensor based on Poly (lactic acid)/PANI-ZnO composite electrospun fibers, RSC Adv., 11 (2021), pp. 28735-28743, doi: 10.1039/D1RA02842A.

[40]

P. Chaudhary, D.K. Maurya, A. Pandey, A. Verma, R.K. Tripathi, S. Kumar, B.C. Yadav, Design and development of flexible humidity sensor for baby diaper alarm: experimental and theoretical study, Sens. Actuators B: Chem., 350 (2022), 130818, doi: 10.1016/j.snb.2021.130818.

[41]

W. Ahmad, B. Jabbar, I. Ahmad, B. Mohamed Jan, M.M. Stylianakis, G. Kenanakis, R. Ikram, Highly sensitive humidity sensors based on polyethylene oxide/CuO/multi walled carbon nanotubes composite nanofibers, Materials, 14 (2021), p. 1037, doi: 10.3390/ma14041037.

[42]

B.C. Yadav, S. Sikarwar, R. Yadav, P. Chaudhary, G.I. Dzhardimalieva, N.D. Golubeva, Preparation of zinc (II) nitrate poly acryl amide (PAAm) and its optoelectronic application for humidity sensing, J. Mater. Sci.: Mater. Electron., 29 (2018), pp. 7770-7777, doi: 10.1007/s10854-018-8774-0.

[43]

M. Taeño, D. Maestre, A. Cremades, Fabrication and study of self-assembled NiO surface networks assisted by Sn doping, J. Alloys Compd., 827 (2020), 154172, doi: 10.1016/j.jallcom.2020.154172.

[44]

E. Traversa, Ceramic sensors for humidity detection: The state-of-the-art and future developments, Sens. Actuators B: Chem., 23 (1995), pp. 135-156, doi: 10.1016/0925-4005(94)01268-M.

AI Summary AI Mindmap
PDF (4461KB)

350

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/