Phase engineering of H/T-Nb2O5 homojunction for enhanced lithium-ion storage

Sheng Li , Jun Li , Wenjie Zhang , Sherif A. El-Khodary , Yubo Luo , Dickon H.L. Ng , Xiaoshui Peng , Jiabiao Lian

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 3 -8.

PDF (3256KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 3 -8. DOI: 10.1016/j.chphma.2024.09.002
Short communication
research-article

Phase engineering of H/T-Nb2O5 homojunction for enhanced lithium-ion storage

Author information +
History +
PDF (3256KB)

Abstract

Phase engineering has gained significant attention in energy-storage applications due to its ability to tailor the physicochemical properties and functionalities of electrode materials. In this study, we demonstrate the in-situ partial phase conversion of niobium pentoxide (Nb2O5), resulting in the formation of a monoclinic/orthorhombic (H/T-Nb2O5) heterophase homojunction. This study further confirms that the unique heterophase interface plays a crucial role in regulating the local electronic environment, resulting in charge redistribution, the formation of an internal electric field, and enhanced electron transfer. Moreover, the presence of abundant phase interfaces offers additional reactive sites for Li+ ion adsorption, thereby enhancing reaction dynamics. The synergistic effects within the H/T-Nb2O5 homojunction are reflected in its high Li+ storage capacity (413 mAh g−1 at 100 mA g−1), superior rate capability, and cycling stability. Thus, this study demonstrates that the construction of heterophase homojunctions offers a promising strategy for developing high-performance anode materials for efficient Li-ion storage.

Keywords

Phase engineering / Monoclinic/Rthorhombic / Nb2O5 homojunction / Kinetics analysis / Li-ion storage

Cite this article

Download citation ▾
Sheng Li, Jun Li, Wenjie Zhang, Sherif A. El-Khodary, Yubo Luo, Dickon H.L. Ng, Xiaoshui Peng, Jiabiao Lian. Phase engineering of H/T-Nb2O5 homojunction for enhanced lithium-ion storage. ChemPhysMater, 2025, 4(1): 3-8 DOI:10.1016/j.chphma.2024.09.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Sheng Li: Writing - original draft, Formal analysis, Data curation. Jun Li: Formal analysis, Data curation. Wenjie Zhang: Writing - review & editing, Formal analysis. Sherif A. El‐Khodary: Funding acquisition, Formal analysis. Yubo Luo: Supervision. Dickon H.L. Ng: Writing - review & editing. Xiaoshui Peng: Writing - review & editing. Jiabiao Lian: Writing - review & editing, Supervision, Funding acquisition, Conceptualization.

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (22250410272 and 21706103) and the Natural Science Foundation of Jiangsu Province (BK20170549). D.H.L. Ng and X.S. Peng also express their gratitude for the Shenzhen Pengcheng Peacock Talent Scheme. J.B. Lian. extends sincere appreciation to the Jiangsu Provincial Program for High-Level Innovative and Entrepreneurial Talent Introduction.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.chphma.2024.09.002.

References

[1]

R.F. Service, Lithium-ion battery development takes Nobel, Science, 366 (2019), p. 292.

[2]

H. Zhao, F. Yang, C.X. Li, T. Li, S.X. Zhang, C.X. Wang, Z.W. Zhang, R.T. Wang Progress and perspectives on two-dimensional silicon anodes for lithium-ion batteries ChemPhysMater, 2 (2023) 1-19.

[3]

S.J. Zhang, Z.L. Qin, Z.G. Hou, J.J. Ye, Z.B. Xu, Y.T. Qian Large-scale preparation of black phosphorus by molten salt method for energy storage ChemPhysMater, 1 (2022) 1-5.

[4]

L.Q. Zhang, C.X. Zhu, S.C. Yu, D.H. Ge, H.S. Zhou Status and challenges facing representative anode materials for rechargeable lithium batteries J. Energy Chem., 66 (2022) 260-294.

[5]

S. Fang, D. Bresser, S. Passerini Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries Adv. Energy Mater. (2019) 55-99

[6]

S.J. An, J.L. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling Carbon, 105 (2016) 52-76.

[7]

Z.H. Song, H. Li, W. Liu, H.Z. Zhang, J.W. Yan, Y.F. Tang, J.Y. Huang, H.M. Zhang, X.F. Li Ultrafast and stable Li-(De) intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport Adv. Mater., 32 (2020), Article 2001001.

[8]

T. Tian, L.L. Lu, Y.C. Yin, F. Li, T.W. Zhang, Y.H. Song, Y.H. Tan, H.B. Yao Multiscale designed niobium titanium oxide anode for fast charging lithium-ion batteries Adv. Funct. Mater., 31 (2020), Article 2007419.

[9]

F. Shen, Z.T. Sun, L. Zhao, Y.H. Xia, Y.Y. Shao, J.S. Cai, S. Li, C. Lu, X.L. Tong, Y. Zhao, J.Y. Sun, Y.L. Shao Triggering the phase transition and capacity enhancement of Nb2O5 for fast-charging lithium-ion storage J. Mater. Chem. A, 9 (2021) 14534-14544.

[10]

X.Y. Han, P.A. Russo, N.G. Bretesché, S. Patanè, S. Santangelo, R. Zhang, N. Pinna Exploiting the condensation reactions of acetophenone to engineer carbon-encapsulated Nb2O5 nanocrystals for high-performance Li and Na energy storage systems Adv. Energy Mater., 9 (2019), Article 1902813.

[11]

H.S. Li, Y. Zhu, S.Y. Dong, L.F. Shen, Z.J. Chen, X.G. Zhang, G.H. Yu Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors Chem. Mater., 28 (2016) 5753-5760.

[12]

K. Kim, M.S. Kim, P.R. Cha, S.H. Kang, J.H. Kim Structural modification of self-organized nanoporous niobium oxide via hydrogen treatment Chem. Mater., 28 (2016) 1453-1461.

[13]

S.Y. Li, T. Wang, W.Q. Zhu, J.B. Lian, Y.P. Huang, Y.Y. Yu, J.X. Qiu, Y. Zhao, Y.C. Yong, H.M. Li Controllable synthesis of uniform mesoporous H-Nb2O5/rGO nanocomposites for advanced lithium-ion hybrid supercapacitors J. Mater. Chem. A, 7 (2019) 693-703.

[14]

S. Li, Y.X. Cui, R. Kang, B.B. Zou, D.H.L. Ng, S.A.E. Khodary, X.H. Liu, J.X. Qiu, J.B. Lian, H.M. Li Oxygen vacancies boosted the electrochemical kinetics of Nb2O5-x for superior lithium storage Chem. Commun., 57 (2021) 8182-8185.

[15]

H.X. Li, X.C. Zhou, W. Zhai, S.Y. Lu, J.Z. Liang, Z. He, H.W. Long, T.F. Xiong, H.Y. Sun, Q.Y. He, Z.X. Fan, H. Zhang Phase engineering of nanomaterials for clean energy and catalytic applications Adv. Energy Mater., 10 (2020), Article 2002019.

[16]

Y. Chen, Z.C. Lai, X. Zhang, Z.X. Fan, Q.Y. He, C.L. Tan, H. Zhang Phase engineering of nanomaterials Nat. Rev. Mater., 4 (2020) 243-256.

[17]

Z.D. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage, Adv. Energy Mater., 8 (2018), Article 1703482.

[18]

Y.F. Cao, S.C. Huang, Z.Q. Peng, F. Yao, X.H. Li, Y. Liu, H.T. Huang, M.M. Wu, Phase control of ultrafine fese nanocrystals in a N-doped carbon matrix for highly efficient and stable oxygen reduction reaction, J. Mater. Chem. A, 9 (2019) 3464-3471.

[19]

X.F. Li, D. Pan, J. Deng, R. Wang, J.Z. Huang, W.M. L, T. Ya, X.J. Wang, Y.M. Zhang, L.L. Xu, Y. Bai, P. Xu, B. Song, Phase-junction engineering boosts the performance of CoSe2 for efficient sodium/potassium storage, J. Mater. Chem. A, 9 (2021) 25954-25963.

[20]

D. Cao, L. Zheng, Q.J. Li, J.F. Zhang, Y. Dong, J.S. Yue, X.R. Wang, Y. Bai, G.Q. Tan, C. Wu, Crystal phase-controlled modulation of binary transition metal oxides for highly reversible Li-O2 batteries, Nano Lett., 21 (2021) 5225-5232.

[21]

S.Q. Guo, X. Zhang, Z. Zhou, G.D. Gao, L. Liu, Facile Preparation of hierarchical Nb2O5 microspheres with photocatalytic activities and electrochemical properties, J. Mater. Chem. A, 2 (2014) 9236-9243.

[22]

T.T. Li, G. Nam, K.T. Liu, J.H. Wang, B. Zhao, Y. ding, L. Soule, M. Avdeev, Z.Y. Luo, W.L. Zhang, T. Yuan, P.P. Jing, M.G. Kim, Y.Y. Song, M.L. Liu, A niobium oxide with a shear structure and planar defects for high-power lithium-ion batteries, Energy Environ. Sci., 15 (2022) 254-264.

[23]

S.M. Zhang, G.L. Liu, W.M. Qiao, J.T. Wang, L.C. Ling, Oxygen vacancies enhance the lithium-ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide, J. Colloid Interf. Sci., 562 (2020) 193-203.

[24]

L.P. Yang, Y.E. Zhu, J. Sheng, F. Li, B. Tang, Y. Zhang, Z. Zhou, T-Nb2O5/C nanofibers prepared through electrospinning with prolonged cycle durability for high-rate sodium-ion batteries induced by pseudo-capacitance, Small, 13 (2017), Article 1702588.

[25]

S. Cheng, J. Wang, S.R. Duan, J. Zhang, Q. Wang, Y. Zhang, L.G. Li, H.T. Liu, Q.B. Xiao, H.Z. Lin, Anionic oxygen vacancies in Nb2O5-x/Carbon hybrid host endow rapid catalytic behaviors for high-performance high areal loading lithium sulfur pouch cell, Chem. Eng. J., 417 (2021), Article 128172.

[26]

Q.M. Gan, H.N. He, K.M. Zhao, Z. He, S.Q. Liu, S.P. Yang, Plasma-induced oxygen vacancies in urchin-like anatase titania coated by carbon for excellent sodium-ion battery anodes, ACS Appl. Mater. Interfaces., 10 (2018) 7031-7042.

[27]

Z.Q. Hu, Q. He, Z.A. Liu, X. Liu, M.S. Qin, B. Wen, W.C. Shi, Y. Zhao, Q. Li, L.Q. Mai, Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal capacity, Sci. Bull., 65 (2020) 1154-1162.

[28]

Z.C. Liu, W.J. Dong, J.B. Wang, C.L. Dong, Y. Lin, I.W. Chen, F.Q. Huang,Orthorhombic Nb2O5-x for durable high-rate anode of Li-ion batteries, iScience, 23 (2020), Article 100767.

[29]

H. Park, D. Lee, T. Song High capacity monoclinic Nb2O5 and semiconducting NbO2 composite as high-power anode material for Li-ion batteries, J. Power Sources., 414 (2019) 377-382.

[30]

Y.J. Zheng, Z.G. Yao, Z. Shadike, M. Lei, J.J. Liu, C.L. Li Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries Adv. Funct. Mater., 32 (2022), Article 2107060.

AI Summary AI Mindmap
PDF (3256KB)

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/