Oxygen doping induced intramolecular electron acceptor system in red g-C3N4 nanosheets with remarkably enhanced photocatalytic performance

Huihui Gao , Zhixin Yao , Xuan Chen , Mengqing Zhu , Gang Zhao , Shouwei Zhang , Jinghua Guo

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 137 -149.

PDF (7165KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (2) : 137 -149. DOI: 10.1016/j.chphma.2024.09.001
Research Article

Oxygen doping induced intramolecular electron acceptor system in red g-C3N4 nanosheets with remarkably enhanced photocatalytic performance

Author information +
History +
PDF (7165KB)

Abstract

The enhancement of the photocatalytic activity of graphitic carbon nitride (g-C3N4) depends on the rational design of its visible-light harvesting and charge separation/migration properties. Herein, an oxygen doping-induced intramolecular electron acceptor system enabling n→π* electronic transitions in red g-C3N4 nanosheets (Eg ∼ 1.89 eV) was prepared via copolymerization with nitrilotriacetic acid (NTA) and urea. The n→π* electronic transition can be controllably tuned, thus broadening the absorption spectrum of the system to ∼750 nm. Simultaneously, doping with oxygen which acts as an electron acceptor, accelerates in-plane charge separation and migration. Moreover, this strategy was confirmed experimentally to be scalable for industrial mass production. Experiments and theoretical calculations demonstrated that the oxygen doping could continuously modulate the band gap (from ∼2.65 to ∼1.32 eV), resulting in the formation of an intramolecular electron acceptor system which enhances charge separation/migration kinetics. The optimized sample exhibited remarkable photocatalytic H2 and H2O2 production rates of ∼144.8 µmol/h and ∼539.76 µM/h, respectively, which are higher than those for currently available g-C3N4-based photocatalysts. Significantly, the sample exhibited H2 and H2O2 photocatalytic yields ∼37.3 and ∼30.1 times those of pristine g-C3N4 under long-wavelength excitation (λ = 520 nm). This study developed an effective and scalable strategy for the design and synthesis of full-spectrum photocatalysts for a broad range of applications.

Keywords

Oxygen doping / Red g-C3N4 nanosheets / Electron acceptor / n→π* electronic transition / H2 and H2O2 production

Cite this article

Download citation ▾
Huihui Gao, Zhixin Yao, Xuan Chen, Mengqing Zhu, Gang Zhao, Shouwei Zhang, Jinghua Guo. Oxygen doping induced intramolecular electron acceptor system in red g-C3N4 nanosheets with remarkably enhanced photocatalytic performance. ChemPhysMater, 2025, 4(2): 137-149 DOI:10.1016/j.chphma.2024.09.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Huihui Gao: Writing - original draft, Data curation. Zhixin Yao: Validation, Data curation. Xuan Chen: Validation, Data curation. Mengqing Zhu: Validation, Software. Gang Zhao: Supervision, Project administration. Shouwei Zhang: Writing - review & editing, Writing - original draft, Supervision. Jinghua Guo: Writing - review & editing, Supervision.

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2021ME143, ZR2020MA076).

Supplementary materials

Supplementary material associated with this can be found, in the online version, at doi:10.1016/j.chphma.2024.09.001.

References

[1]

Y. Xu, M. Fan, W. Yang, Y. Xiao, L. Zeng, X. Wu, Q. Xu, C. Su, Q. He, Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production, Adv. Mater., 33 (2021), 2101455.

[2]

C. Hu, J. Hu, Z. Zhu, Y. Lu, S. Chu, T. Ma, Y. Zhang, H. Huang, Orthogonal charge transfer by precise positioning of silver single atoms and clusters on carbon nitride for efficient piezocatalytic pure water splitting, Angew. Chem. Int. Ed., 61 (2022), e202212397.

[3]

Q. You, C. Zhang, M. Cao, B. Wang, J. Huang, Y. Wang, S. Deng, G. Yu, Defects controlling, elements doping, and crystallinity improving triple-strategy modified carbon nitride for efficient photocatalytic diclofenac degradation and H2O2 production, Appl. Catal. B-Environ., 321 (2023), 121941.

[4]

H. Wang, J. Jiang, L. Yu, J. Peng, Z. Song, Z. Xiong, N. Li, K. Xiang, J. Zou, J.P. Hsu, T. Zhai, Tailoring advanced N-defective and S-doped g-C3N4 for photocatalytic H2 evolution, Small, 19 (2023), 2301116.

[5]

M.L. Xu, M. Lu, G.Y. Qin, X.M. Wu, T. Yu, L.N. Zhang, K. Li, X. Cheng, Y.Q. Lan, Piezo-photocatalytic synergy in BiFeO3@COF Z-scheme heterostructures for high-efficiency overall water splitting, Angew. Chem. Int. Ed., 61 (2022), e202210700.

[6]

B. Zhai, H. Li, G. Gao, Y. Wang, P. Niu, S. Wang, L. Li, A crystalline carbon nitride based near-infrared active photocatalyst, Adv. Funct. Mater., 32 (2022), 2207375.

[7]

G. Sun, Z. Tai, F. Li, Q. Ye, T. Wang, Z. Fang, X. Hou, L. Jia, H. Wang, Noble-metal-free ultrathin CdS-NiFeS 2D-2D heterojunction nanosheets for significantly enhanced photocatalytic hydrogen evolution, ACS Sustain. Chem. Eng., 11 (2023), pp. 4009-4019.

[8]

Y. Shao, J. Hu, T. Yang, X. Yang, J. Qu, Q. Xu, C.M. Li, Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction, Carbon, 190 (2022), pp. 337-347.

[9]

X. Zhang, P. Ma, C. Wang, L. Gan, X. Chen, P. Zhang, Y. Wang, H. Li, L. Wang, X. Zhou, K. Zheng, Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution, Energ. Environ. Sci., 15 (2022), pp. 830-842.

[10]

C. Feng, L. Tang, Y. Deng, J. Wang, J. Luo, Y. Liu, X. Ouyang, H. Yang, J. Yu, J. Wang, Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution, Adv. Funct. Mater., 30 (2020), 2001922.

[11]

T. Wang, L. Chang, H. Wu, W. Yang, J. Cao, H. Fan, J. Wang, H. Liu, Y. Hou, Y. Jiang, H. Zhu, Fabrication of three-dimensional hierarchical porous 2D/0D/2D g-C3N4 modified MXene-derived TiO2@C: Synergy effect of photocatalysis and H2O2 oxidation in NO removal, J. Colloid Interface Sci., 612 (2022), pp. 434-444.

[12]

W. Shi, W. Sun, Y. Liu, K. Zhang, H. Sun, X. Lin, Y. Hong, F. Guo, A self-sufficient photo-Fenton system with coupling in-situ production H2O2 of ultrathin porous g-C3N4 nanosheets and amorphous FeOOH quantum dots, J. Hazard. Mater., 436 (2022), 129141.

[13]

X. Wang, X. Yang, C. Zhao, Y. Pi, X. Li, Z. Jia, S. Zhou, J. Zhao, L. Wu, J. Liu, Ambient preparation of benzoxazine-based phenolic resins enables long-term sustainable photosynthesis of hydrogen peroxide, Angew. Chem. Int. Ed., 62 (2023), e202302829.

[14]

H. Zhang, X. Bai, Protonated g-C3N4 coated Co9S8 heterojunction for photocatalytic H2O2 production, J. Colloid Interface Sci., 627 (2022), pp. 541-553.

[15]

J. Sun, H. Sekhar Jena, C. Krishnaraj, K. Singh Rawat, S. Abednatanzi, J. Chakraborty, A. Laemont, W. Liu, H. Chen, Y.Y. Liu, K. Leus, H. Vrielinck, V. Van Speybroeck, P. Van Der Voort, Pyrene-based covalent organic frameworks for photocatalytic hydrogen peroxide production, Angew. Chem. Int. Ed., 62 (2023), e202216719.

[16]

M. Song, H. Song, P. Chen, D.H. Lan, F. Liu, C.T. Au, S.F. Yin, Polarization reorientation of carbon nitride induced by a local bridge donor for boosting photocatalytic H2 evolution integrated with selective amine oxidation, ACS Sustain. Chem. Eng., 11 (2023), pp. 8096-8105.

[17]

S. Zhang, J. Guo, W. Zhang, H. Gao, J. Huang, G. Chen, X. Xu, Dopant and defect doubly modified CeO2/g-C3N4 nanosheets as 0D/2D Z-Scheme heterojunctions for photocatalytic hydrogen evolution: Experimental and density functional theory studies, ACS Sustain. Chem. Eng., 9 (2021), pp. 11479-11492.

[18]

X. Yan, M. Zhang, Y. Chen, Y. Wu, R. Wu, Q. Wan, C. Liu, T. Zheng, R. Feng, J. Zhang, C. Chen, C. Xia, Q. Zhu, X. Sun, Q. Qian, B. Han, Synergy of Cu/C3N4 interface and Cu nanoparticles dual catalytic regions in electrolysis of CO to acetic acid, Angew. Chem. Int. Edit., 62 (2023), e202301507.

[19]

V.R. Battula, S. Kumar, D.K. Chauhan, S. Samanta, K. Kailasam, A true oxygen-linked heptazine based polymer for efficient hydrogen evolution, Appl. Catal. B-Environ., 244 (2019), pp. 313-319.

[20]

X. Wu, D. Li, B. Luo, B. Chen, Y. Huang, T. Yu, N. Shen, L. Li, W. Shi, Molecular-level insights on NIR-driven photocatalytic H2 generation with ultrathin porous S-doped g-C3N4 nanosheets, Appl. Catal. B-Environ., 325 (2023), 122292.

[21]

Y. Shang, Y. Wang, C. Lv, F. Jing, T. Liu, W. Li, S. Liu, G. Chen, A broom-like tube-in-tube bundle O-doped graphitic carbon nitride nanoreactor that promotes photocatalytic hydrogen evolution, Chem. Eng. J., 431 (2022), 133898.

[22]

H. Tang, R. Wang, C. Zhao, Z. Chen, X. Yang, D. Bukhvalov, Z. Lin, Q. Liu, Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis, Chem. Eng. J., 374 (2019), pp. 1064-1075.

[23]

G. Yu, K. Gong, C. Xing, L. Hu, H. Huang, L. Gao, D. Wang, X. Li, Dual P-doped-site modified porous g-C3N4 achieves high dissociation and mobility efficiency for photocatalytic H2O2 production, Chem. Eng. J., 461 (2023), 142140.

[24]

F. Ge, S. Huang, J. Yan, L. Jing, F. Chen, M. Xie, Y. Xu, H. Xu, H. Li, Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity, Chinese J. Catal., 42 (2021), pp. 450-459.

[25]

K. Wang, Z. Shu, J. Zhou, Z. Zhao, Y. Wen, S. Sun, Enhancing piezocatalytic H2O2 production through morphology control of graphitic carbon nitride, J. Colloid Interface Sci., 648 (2023), pp. 242-250.

[26]

Y. Shi, L. Li, H. Sun, Z. Xu, Y. Cai, W. Shi, F. Guo, X. Du, Engineering ultrathin oxygen-doped g-C3N4 nanosheet for boosted photoredox catalytic activity based on a facile thermal gas-shocking exfoliation effect, Sep. Purif. Technol., 292 (2022), 121038.

[27]

Z. Ya, X. Jiang, P. Wang, J. Cai, Q. Wang, H. Xie, S. Xiang, T. Wang, D. Cai, Template-free synthesis of phosphorus-doped g-C3N4 micro-tubes with hierarchical core-shell structure for high-efficient visible light responsive catalysis, Small, 19 (2023), 2208254.

[28]

S. An, G. Zhang, K. Li, Z. Huang, X. Wang, Y. Guo, J. Hou, C. Song, X. Guo, Self-supporting 3D carbon nitride with tunable n→π* electronic transition for enhanced solar hydrogen production, Adv. Mater., 33 (2021), 2104361.

[29]

Y.Y. Li, B.X. Zhou, H.W. Zhang, T. Huang, Y.M. Wang, W.Q. Huang, W. Hu, A. Pan, X. Fan, G.F. Huang, A host-guest self-assembly strategy to enhance π-electron densities in ultrathin porous carbon nitride nanocages toward highly efficient hydrogen evolution, Chem. Eng. J., 430 (2022), 132880.

[30]

W. Liu, P. Wang, J. Chen, X. Gao, H. Che, B. Liu, Y. Ao, Unraveling the mechanism on ultrahigh efficiency photocatalytic H2O2 generation for dual-heteroatom incorporated polymeric carbon nitride, Adv. Funct. Mater., 32 (2022), 2205119.

[31]

Y. He, J. Huang, B. Wang, Y. Qu, Construction of Z-scheme heterojunction C3N4/N-CQDs@W18O49 for full-spectrum photocatalytic organic pollutant degradation, Appl. Surf. Sci., 610 (2023), 155255.

[32]

L. Jing, Y. Xu, M. Zhou, J. Deng, W. Wei, M. Xie, Y. Song, H. Xu, H. Li, Novel broad-spectrum-driven oxygen-linked band and porous defect co-modified orange carbon nitride for photodegradation of Bisphenol A and 2-Mercaptobenzothiazole, J. Hazard. Mater., 396 (2020), 122659.

[33]

Z. Zhao, Z. Shu, J. Zhou, L. Ye, T. Li, W. Wang, L. Xu, NH-rich red poly(heptazine imide) nanoparticles with simultaneously promoted exciton dissociation and activated n→π* electronic transition for boosted photocatalytic H2 generation, J. Mater. Chem. A, 10 (2022), pp. 17668-17679.

[34]

W. Wang, Z. Shu, J. Zhou, H. Tang, T. Li, D. Meng, Optimizing the optical absorption of poly(heptazine imide) by the n→π* electron transition for improved photocatalytic H2 evolution, ACS Appl. Mater. Interfaces, 14 (2022), pp. 41131-41140.

[35]

R. Tang, H. Zeng, C. Feng, S. Xiong, L. Li, Z. Zhou, D. Gong, L. Tang, Y. Deng, Twisty C-TiO2/PCN S-scheme heterojunction with enhanced n→π* electronic excitation for promoted piezo-photocatalytic effect, Small, 19 (2023), 2207636.

[36]

K. Liu, J. Ma, X. Yang, Z. Liu, X. Li, J. Zhang, R. Cui, R. Sun, Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery, Chem. Eng. J., 437 (2022), 135232.

[37]

G. Zhang, Y. Xu, C. He, P. Zhang, H. Mi, Oxygen-doped crystalline carbon nitride with greatly extended visible-light-responsive range for photocatalytic H2 generation, Appl. Catal. B-Environ., 283 (2021), 119636.

[38]

G. Zhang, A. Savateev, Y. Zhao, L. Li, M. Antonietti, Advancing the n→π* electron transition of carbon nitride nanotubes for H2 photosynthesis, J. Mater. Chem. A, 5 (2017), pp. 12723-12728.

[39]

L. Jing, M. Xie, Y. Xu, C. Tong, X. Du, H. Zhao, N. Zhong, H. Li, J. Hu, Advanced oxidation via the synergy of C-defective/C-O band modified ultrathin porous g-C3N4 and PMS for efficient photothermal degradation of bisphenol pollutants and lignin derivatives, Green Energ. Environ., 9 (2024), pp. 1159-1170.

[40]

Y. Zhang, Z. Chen, J. Li, Z. Lu, X. Wang, Self-assembled synthesis of oxygen-doped g-C3N4 nanotubes in enhancement of visible-light photocatalytic hydrogen, J. Energy Chem., 54 (2021), pp. 36-44.

[41]

C. Tong, L. Jing, M. Xie, M. He, Y. Liu, J. Yuan, Y. Song, Y. Xu, C-O band structure modified broad spectral response carbon nitride with enhanced electron density in photocatalytic peroxymonosulfate activation for bisphenol pollutants removal, J. Hazard. Mater., 432 (2022), 128663.

[42]

Y. Wang, H. Wang, X. Li, L. Gao, Y. Li, J. Huo, W. Kang, C. Zou, L. Jia, Oxygen vacancy-mediated direct solid phase integration of interfacial chemical bond reinforced LaNiO3/RGO/g-C3N4 heterojunction for improving hydrogen production, Appl. Surf. Sci., 616 (2023), 156501.

[43]

J. Wu, N. Li, H.B. Fang, X. Li, Y.Z. Zheng, X. Tao, Nitrogen vacancies modified graphitic carbon nitride: Scalable and one-step fabrication with efficient visible-light-driven hydrogen evolution, Chem. Eng. J., 358 (2019), pp. 20-29.

[44]

Y. Xue, C. Ma, Q. Yang, X. Wang, S. An, X. Zhang, J. Tian, Construction of g-C3N4 with three coordinated nitrogen (N3C) vacancies for excellent photocatalytic activities of N2 fixation and H2O2 production, Chem. Eng. J., 457 (2023), 141146.

[45]

L. Xu, L. Li, Z. Hu, J.C. Yu, EDTA-enhanced photocatalytic oxygen reduction on K-doped g-C3N4 with N-vacancies for efficient non-sacrificial H2O2 synthesis, J. Catal., 418 (2023), pp. 300-311.

[46]

T. Zhou, J. Shi, G. Li, B. Liu, B. Hu, G. Che, C. Liu, L. Wang, L. Yan, Advancing n→π* electron transition of carbon nitride via distorted structure and nitrogen heterocycle for efficient photodegradation: Performance, mechanism and toxicity insight, J. Colloid Interface Sci., 632 (2023), pp. 285-298.

[47]

X. Hu, R.T. Guo, Z.D. Lin, Z.X. Bi, X. Chen, J. Wang, W.G. Pan, Construction of carbon dot-modified g-C3N4/BiOIO3 Z-scheme heterojunction for boosting photocatalytic CO2 reduction under full spectrum light, ACS Sustain. Chem. Eng., 10 (2022), pp. 11143-11153.

[48]

F. He, X. Liu, X. Zhao, J. Zhang, P. Dong, Y. Zhang, C. Zhao, H. Sun, X. Duan, S. Wang, S. Wang, Manipulation of n→π* electronic transitions via implanting thiophene rings into two-dimensional carbon nitride nanosheets for efficient photocatalytic water purification, J. Mater. Chem. A, 10 (2022), pp. 20559-20570.

[49]

S. Zhang, Y. Liu, P. Gu, R. Ma, T. Wen, G. Zhao, L. Li, Y. Ai, C. Hu, X. Wang, Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies, Appl. Catal. B-Environ., 248 (2019), pp. 1-10.

AI Summary AI Mindmap
PDF (7165KB)

376

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/