Epitaxial growth of Pd clusters on N-doped Ag nanowires for oxygen reduction reaction

Qinhe Guan , Shiwei Sun , Xiaohang Ge , Fan Zhang , Lijie Qu , Chao Yin , Weiyong Yuan , Lianying Zhang

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 71 -77.

PDF (3157KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 71 -77. DOI: 10.1016/j.chphma.2024.06.004
Research article
research-article

Epitaxial growth of Pd clusters on N-doped Ag nanowires for oxygen reduction reaction

Author information +
History +
PDF (3157KB)

Abstract

Efficient and stable Pt-free electrocatalysts for oxygen reduction reaction (ORR) are indispensable for future fuel cells. Herein, we describe a heterostructure of Pd nanocrystals (PdNCs) on N-doped Ag nanowires (NWs) synthesized using a direct epitaxial growth strategy with a Pd loading of only 9.5 wt.%. The PdAg bimetallic heterostructure showed the highest mass activity among reported PdAg-based ORR electrocatalysts and exhibited excellent stability, with only a 1.5 mV decay in the half-wave potential even after 20000 cycles of continuous testing. The remarkably enhanced activity and durability can be attributed to the distinct advantages of the ultrasmall PdNCs, cocatalysts of N-doped AgNWs, and their heterointerfaces. This work reveals that the epitaxial growth of a heterostructure on a stable support is a promising strategy for promoting catalytic performance.

Keywords

N doping / Epitaxial growth / PdAg heterostructure / Ag nanowires / Oxygen reduction

Cite this article

Download citation ▾
Qinhe Guan, Shiwei Sun, Xiaohang Ge, Fan Zhang, Lijie Qu, Chao Yin, Weiyong Yuan, Lianying Zhang. Epitaxial growth of Pd clusters on N-doped Ag nanowires for oxygen reduction reaction. ChemPhysMater, 2025, 4(1): 71-77 DOI:10.1016/j.chphma.2024.06.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Qinhe Guan: Writing - original draft, Investigation. Shiwei Sun: Software, Investigation. Xiaohang Ge: Investigation. Fan Zhang: Investigation. Lijie Qu: Investigation. Chao Yin: Investigation. Weiyong Yuan: Writing - review & editing, Visualization, Supervision. Lianying Zhang: Writing - review & editing, Supervision, Conceptualization.

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (22379078).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.chphma.2024.06.004.

References

[1]

M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486 (2012) 43-51.

[2]

L. Wang, Z. Zeng, W. Gao, T. Maxson, D. Raciti, M. Giroux, X. Pan, C. Wang, J. Greeley, Tunable intrinsic strain in two-dimensional transition metal electrocatalysts, Science, 363 (2019) 870-874.

[3]

F. Lin, F. Lv, Q. Zhang, H. Luo, K. Wang, J. Zhou, W. Zhang, W. Zhang, D. Wang, L. Gu, Local coordination regulation through tuning atomic-scale cavities of Pd metallene toward efficient oxygen reduction electrocatalysis, Adv. Mater., 34 (2022), Article 2202084.

[4]

S. Chen, J. Zhao, H. Su, H. Li, J. Zeng, Pd-Pt tesseracts for the oxygen reduction reaction, J. Am. Chem. Soc., 143 (2021) 496-503.

[5]

V. Glibin, J. Dodelet, G. Zhang, Energetics and thermodynamic stability of potential Fe(II)-hexa-aza-active sites for O2 reduction in PEM fuel cells, SusMat, 2 (2022) 731-748.

[6]

Q.Y. Chen, Z.Y. Chen, A. Ali, Y.Q. Luo, H.Y. Feng, Y.Y. Luo, P. Tsiakaras, P.K. Shen, Shell-thickness-dependent core-shell nanosheets for efficient oxygen reduction reaction, Chem. Eng. J., 427 (2021), Article 131565.

[7]

H. Xie, S. Chen, J. Liang, T. Wang, Z. Hou, H.L. Wang, G. Chai, Q. Li, Weakening intermediate bindings on CuPd/Pd core/shell nanoparticles to achieve Pt-like bifunctional activity for hydrogen evolution and oxygen reduction reactions, Adv. Funct. Mater., 31 (2021), Article 2100883.

[8]

X. Ge, Q. Guan, F. Zhang, S. Sun, Y. Xu, K. Zhang, W. Yuan, L.Y. Zhang, Direct epitaxial growth of Au nanoparticles on Pd metallene enables robust oxygen reduction electrocatalysis, Mater. Today Eng., 39 (2024), p. 10147.

[9]

F. Zhang, S. Sun, X. Ge, Q. Guan, M. Ling, W. Yuan, L.Y. Zhang, Synthesizing Pd-based high entropy alloy nanoclusters for enhanced oxygen reduction, Chem. Commun., 60 (2024) 3591-3594.

[10]

T. Zeng, X. Meng, H. Huang, L. Zheng, H. Chen, Y. Zhang, W. Yuan, L.Y. Zhang, Controllable synthesis of web footed PdCu nanosheets and their electrocatalytic applications, Small, 7 (2022), Article 2107623.

[11]

Y. Nie, L. Li, Z.D. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev., 44 (2015) 2168-2201.

[12]

L.Y. Zhang, C.X. Guo, H. Cao, S. Wang, Y. Ouyang, B. Xu, P. Guo, C.M. Li, Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction reaction in acidic medium, Chem. Eng. J., 431 (2022), Article 133237.

[13]

D. Yan, L. Zhang, L. Shen, R. Hu, W. Xiao, X. Yang, Pd nanoparticles embedded in N-enriched MOF-derived architectures for efficient oxygen reduction reaction in alkaline media, Green Energy. Environ., 8 (2022) 1205-1215.

[14]

J. Liang, Y. Xia, X. Liu, F. Huang, J. Liu, S. Li, T. Wang, S. Jiao, R. Cao, J. Han, H. Wang, Q. Li, Molybdenum doped ordered L10-PdZn nanosheets for enhanced oxygen reduction electrocatalysis, SusMat, 2 (2022) 347-356.

[15]

M. Zhou, J. Guo, J. Fang, Nanoscale design of Pd-based electrocatalysts for oxygen reduction reaction enhancement in alkaline media, Small Struct., 3 (2022), Article 2100188.

[16]

G. Jiang, X. Li, X. Lv, L. Chen, Core/shell FePd/Pd catalyst with a superior activity to Pt in oxygen reduction reaction, Sci. Bull., 61 (2016), p. 1248.

[17]

H. Wang, W. Wang, H. Yu, Q. Mao, Y. Xu, X. Li, Z. Wang, L. Wang, Interface engineering of polyaniline-functionalized porous Pd metallene for alkaline oxygen reduction reaction, Appl. Catal. B-Environ., 307 (2022), Article 121172.

[18]

X. Lu, M. DiSalvo, F.J. Abruna, H.D. Abruña, Enhancing the electrocatalytic activity of Pd/M ( M = Ni, Mn) nanoparticles for the oxygen reduction reaction in alkaline media through electrochemical dealloying, ACS Catal., 10 (2020) 5891-5898.

[19]

X. Wu, C. Ni, J. Man, X. Shen, S. Cui, X. Chen, A strategy to promote the ORR electrocatalytic activity by the novel engineering bunched three-dimensional Pd-Cu alloy aerogel, Chem. Eng. J., 454 (2023), Article 140293.

[20]

C. Tan, J. Chen, X.J. Wu, H. Zhang, Epitaxial growth of hybrid nanostructures, Nat. Rev. Mater., 3 (2018), p. 17089.

[21]

T. Wang, A. Chutia, D.J.L. Brett, P.R. Shearing, G. He, G. Chai, I.P. Parkin, Palladium alloys used as electrocatalysts for the oxygen reduction reaction, Energy Environ. Sci., 14 (2021) 2639-2669.

[22]

Y. Zuo, D. Rao, S. Li, T. Li, G. Zhu, S. Chen, L. Song, Y. Chai, H. Han, Atomic vacancies control of Pd-based catalysts for enhanced electrochemical performance, Adv. Mater., 30 (2018), Article 1704171.

[23]

Y. Ge, X. Wang, B. Huang, Z. Huang, B. Chen, C. Ling, J. Liu, G. Liu, J. Zhang, G. Wang, Seeded synthesis of unconventional 2H-phase Pd alloy nanomaterials for highly efficient oxygen reduction, J. Am. Chem. Soc., 143 (2021) 17292-17299.

[24]

S. Huang, S. Lu, S. Gong, Q. Zhang, F. Duan, H. Zhu, H. Gu, W. Dong, M. Du, Sublayer stable Fe dopant in porous Pd metallene boosts oxygen reduction reaction, ACS Nano, 16 (2022) 522-532.

[25]

H. Fu, J. Wang, Y. Chen, H. Huang, Y. Wang, H. Li, F. Lai, L. Zhang, N. Zhang, J. Chen, T. Liu, Pd3Pb bimetallic aerogels for anti-poisoned oxygen reduction reaction, Chem. Eng. J., 470 (2023), Article 144255.

[26]

Y. Lu, J. Wang, Y. Peng, A. Fisher, X. Wang, Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction, Adv. Energy. Mater., 7 (2017), Article 1700919.

[27]

D.A. Slanac, W.G. Hardin, K.P. Johnston, K.J. Stevenson, Atomic ensemble and electronic effects in Ag-rich AgPd nanoalloy catalysts for oxygen reduction in alkaline media, J. Am. Chem. Soc., 134 (2012) 9812-9819.

[28]

K. Park, H. Matsune, M. Kishida, S. Takenaka, Carbon-supported Pd-Ag catalysts with silica-coating layers as active and durable cathode catalysts for polymer electrolyte fuel cells, Int. J. Hydrog. Energy, 42 (2017) 18951-18958.

[29]

L.E. Betancourt, A.R. Pérez, I. Orozco, A.I. Frenkel, Y. Li, K. Sasaki, S.D. Senanayake, C.R. Cabrera, Enhancing ORR performance of bimetallic PdAg electrocatalysts by designing interactions between Pd and Ag, ACS Appl. Energy Mater., 3 (2020) 2342-2349.

[30]

M.V. Cartagena, E.M. Vélez, G.S. Quintana, D.A. Pérez, M.A. Jesús, C.R. Cabrera, Silver-palladium electrodeposition on unsupported vulcan XC-72R for oxygen reduction reaction in alkaline media, ACS Appl. Energy Mater., 2 (2019) 4664-4673.

[31]

H. Erikson, A. Sarapuu, K. Tammeveski, Oxygen reduction reaction on silver catalysts in alkaline media: A minireview, ChemElectroChem, 6 (2019) 73-86.

[32]

Z.Z. Shi, W.P. Li, W.J. Kang, Y. Feng, Z. Li, X.Y. Zhong, J. Yang, H. Liu, C.K. Dong, P.F. Yin, F.R. Chen, X.W. Du, Silver clusters with adatoms as a catalyst for the oxygen reduction reaction, ACS Catal, 13 (2023) 9181-9189.

[33]

F. Luo, A. Roy, M.T. Sougrati, A. Khan, D.A. Cullen, X. Wang, M. Primbs, A. Zitolo, P. Strasser, Structural and reactivity effects of secondary metal doping into iron-nitrogen-carbon catalysts for oxygen electroreduction, J. Am. Chem. Soc., 27 (2023) 14737-14747.

[34]

T. Li, Y. Yao, B.H. Ko, Z. Huang, Q. Dong, J. Gao, W. Chen, J. Li, S. Li, X. Wang, Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions, Adv. Funct. Mater., 31 (2021), Article 210561.

[35]

L. Gao, T. Sun, X. Chen, Z. Yang, M. Li, W. Lai, W. Zhang, Q. Yuan, H. Huang, Identifying the distinct roles of dual dopants in stabilizing the platinum-nickel nanowire catalyst for durable fuel cell, Nat. Commun., 15 (2024), p. 508.

[36]

Y.J. Xion, Y.N. Ma, L.L. Zo, S.B. Ha, H. Chen, S. Wang, M. Gu, Y. Shen, L.P. Zhan, Z.H. Xia, J. L, H. Yang, N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction, J. Catal., 382 (2020) 247-255.

[37]

X.R. Zhao, H. Cheng, X.B. Chen, Q. Zhang, C.Z. Li, J. Xie, Ne. Marinkovic, L. Ma, J.C. Zheng, K. Sasaki, Multiple metal-nitrogen bonds synergistically boosting the activity and durability of high-entropy alloy electrocatalysts, J. Am. Chem. Soc., 146 (2024) 3010-3022.

[38]

Z. Qiao, C. Wang, Y. Zeng, J.S. Spendelow, G. Wu, Advanced nanocarbons for enhanced performance and durability of platinum catalysts in proton exchange membrane fuel cells, Small, 17 (2021), Article 2006805.

[39]

H.W. Park, B.G. Seo, J.W. Shim, N.I. Kim, Y.S. Choi, J.H. Shim, Atomic layer deposited platinum on tungsten oxide support as high performance hybrid catalysts for polymer electrolyte membrane fuel cells, Appl. Catal. B-Environ., 337 (2023), Article 122956.

[40]

M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.Y. Chen, R. Yu, Q. Zhang, L. Gu, B.V. Merinov, Z. Lin, Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction, Science, 354 (2016) 1414-1419.

[41]

J.Y. Park, W.J. Dong, S.M. Jung, Y.T. Kim, J.L. Lee, Oxygen reduction reaction of vertically-aligned nanoporous Ag nanowires, Appl. Catal. B-Environ., 298 (2021), Article 120586.

[42]

L.Y. Zhang, Z.L. Zhao, C.M. Li, Formic acid-reduced ultrasmall Pd nanocrystals on graphene to provide superior electocatalytic activity and stability toward formic acid oxidation, Nano Energy, 11 (2015) 71-77.

[43]

Y. Ouyang, H. Cao, H. Wu, D. Wu, F. Wang, X. Fan, W. Yuan, M. He, L.Y. Zhang, C.M. Li, Tuning Pt-skinned PtAg nanotubes in nanoscales to efficiently modify electronic structure for boosting performance of methanol electrooxidation, Appl. Catal. B-Environ., 265 (2020), Article 118606.

[44]

B. Zhang, G. Zhao, B. Zhang, L. Xia, Y. Jiang, T. Ma, M. Gao, W. Sun, H. Pan, Lattice-confined Ir clusters on Pd Nanosheets with charge redistribution for the hydrogen oxidation reaction under alkaline conditions, Adv. Mater., 33 (2021), Article 2105400.

[45]

L.Y. Zhang, T. Zeng, L. Zheng, Y. Wang, W. Yuan, M. Niu, C.X. Guo, D. Cao, C.M. Li, Epitaxial growth of Pt-Pd bimetallic heterostructures for the oxygen reduction reaction, Adv. Powder Mater., 2 (2023), Article 100131.

[46]

H. Ding, P. Wang, C. Su, H. Liu, X. Tai, N. Zhang, H. Lv, Y. Lin, W. Chu, X. Wu, C. Wu, Y. Xie, Epitaxial growth of ultrathin highly crystalline Pt-Ni nanostructure on a metal carbide template for efficient oxygen reduction reaction, Adv. Mater., 34 (2022), Article 2109188.

[47]

B. Lim, M. Jiang, P.H.C. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science, 324 (2009) 1302-1305.

[48]

A.R.C. Bredar, M.D. Blanchet, A.R. Burton, B.E. Matthews, S.R. Spurgeon, R.B. Comes, B.H. Farnum, Oxygen reduction electrocatalysis with epitaxially grown spinel MnFe2O4 and Fe3O4, ACS Catal., 12 (2022) 3577-3588.

[49]

S.V.P. Vattikuti, P.C. Nagajyothi, K.C. Devarayapalli, K. Yoo, N.D. Nam, J. Shim, Hybrid Ag/MoS2 nanosheets for efficient electrocatalytic oxygen reduction, Appl. Surf. Sci., 526 (2020), Article 146751.

[50]

Z.L. Zhao, L.Y. Zhang, S. Bao, C.M. Li, One-pot synthesis of small and uniform Au@PtCu core-alloy shell nanoparticles as an efficient electrocatalyst for direct methanol fuel cells, Appl. Catal. B-Environ., 174 (2015) 361-366.

[51]

Z. Mao, C. Ding, X. Liu, Q. Zhang, X. Qin, H. Li, F. Yang, Q. Li, X.G. Zhang, J. Zhang, Interstitial B-Doping in Pt lattice to upgrade oxygen electroreduction performance, ACS Catal., 12 (2022) 8848-8856.

[52]

R. Guo, K. Zhang, Y. Liu, Y. He, C. Wu, M. Jin, Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells, J. Mater. Chem. A, 9 (2021), p. 6196.

[53]

Y. Xiong, Y. Ma, L. Zou, S. Han, H. Chen, S. Wang, M. Gu, Y. Shen, L. Zhang, Z. Xia, N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction, J. Catal., 382 (2020) 247-255.

[54]

Y.N. Chen, X. Zhang, H. Cui, X. Zhang, Z. Xie, X.G. Wang, M. Jiao, Z. Zhou, Synergistic electrocatalytic oxygen reduction reactions of Pd/B4C for ultra-stable Zn-air batteries, Energy Stor. Mater., 15 (2018) 226-233.

[55]

X. Yang, C. Priest, Y. Hou, G. Wu, Atomically dispersed dualmetalsite PGM-free electrocatalysts for oxygen reduction reaction: Opportunities and challenges, SusMat, 2 (2022) 569-590.

[56]

X. Tian, X. Zhao, Y.Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E.J. Hensen, X.W.D. Lou, Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells, Science, 366 (2019) 850-856.

[57]

B. Zhang, G. Fu, Y. Li, L. Liang, N.S. Grundish, Y. Tang, J.B. Goodenough, Z. Cui, General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size, Angew. Chem. Int. Ed., 59 (2020) 7857-7863.

[58]

J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters, Science, 315 (2007) 220-222.

[59]

J. Greeley, I. Stephens, A. Bondarenko, T.P. Johansson, H.A. Hansen, T. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nat. Chem., 1 (2009) 552-556.

[60]

M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater., 2 (2017), p. 17059.

[61]

J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B, 108 (2004) 17886-17892.

[62]

T. He, W. Wang, F. Shi, X. Yang, X. Li, J. Wu, Y. Yin, M. Jin, Mastering the surface strain of platinum catalysts for efficient electrocatalysis, Nature, 598 (2021) 76-81.

[63]

J. Zhang, Y. Yuan, L. Gao, G. Zeng, M. Li, H. Huang, Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: Fundamental understanding and design strategies, Adv. Mater., 33 (2021), Article 2006494.

AI Summary AI Mindmap
PDF (3157KB)

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/