Rapid Joule-heating synthesis of metal/carbon-based electrocatalysts for efficient carbon dioxide reduction

Weijian Guo , Xueying Cao , Ao Zhou , Wenwen Cai , Jintao Zhang

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 64 -70.

PDF (2875KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 64 -70. DOI: 10.1016/j.chphma.2024.06.002
Research article
research-article

Rapid Joule-heating synthesis of metal/carbon-based electrocatalysts for efficient carbon dioxide reduction

Author information +
History +
PDF (2875KB)

Abstract

Carbon-loaded metal nanoparticles (NPs) are widely employed as functional materials for electrocatalysis. In this study, a rapid thermal shock method was developed to load various metal nanoparticles onto carbon supports. Compared to conventional pyrolysis processes, Joule heating enables rapid heating to elevated temperatures within a short period, effectively preventing the migration and aggregation of metal atoms. Simultaneously, the anchoring effect of defective carbon carriers ensures the uniform distribution of NPs on the carbon supports. Additionally, nitrogen doping can significantly enhance the electronic conductivity of the carbon matrix and strengthen the metal-carbon interactions, thereby synergistically improving catalyst performance. When used as electrocatalysts for electrocatalytic CO2 reduction, bismuth-, indium-, and tin/carbon-carrier-based catalysts exhibit excellent Faraday efficiencies of 92.8%, 86.4%, and 73.3%, respectively, for formate generation in flow cells. The influence of different metals and calcination temperatures on catalytic performance was examined to provide valuable insights into the rational design of carbon-based electrocatalysts with enhanced electrocatalytic activity.

Keywords

Electrocatalysis / Joule heating / Carbon materials / Carbon dioxide reduction

Cite this article

Download citation ▾
Weijian Guo, Xueying Cao, Ao Zhou, Wenwen Cai, Jintao Zhang. Rapid Joule-heating synthesis of metal/carbon-based electrocatalysts for efficient carbon dioxide reduction. ChemPhysMater, 2025, 4(1): 64-70 DOI:10.1016/j.chphma.2024.06.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration·of Competing Interest

Jintao Zhang is a guest editor for special issue: Energy Material Chemistry, and was not involved in the editorial review or·the decision to publish this article. All authors declare that there are no competing interests.

CRediT authorship contribution statement

Weijian Guo: Writing - original draft, Methodology, Investigation. Xueying Cao: Writing - original draft, Software, Investigation. Ao Zhou: Writing - original draft. Wenwen Cai: Writing - original draft, Methodology. Jintao Zhang: Writing - review & editing, Supervision.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22175108 and 22379086), the Natural Science Foundation of Shandong Province (ZR2020JQ09 and ZR2022ZD27), and the Taishan Scholars Program of Shandong Province (tstp20221105). The authors also acknowledge the assistance of the Analytical Center for Structural Constituents and Physical Properties of the Core Facilities Sharing Platform at Shandong University

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.chphma.2024.06.002.

References

[1]

L. Li, X. Li, Y. Sun, Y. Xie, Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network, Chem. Soc. Rev., 51 (2022) 1234-1252, doi: 10.1039/d1cs00893e.

[2]

A. Nairan, Z. Feng, R. Zheng, U. Khan, J. Gao, Engineering metallic alloy electrode for robust and active water electrocatalysis with large current density exceeding 2000 mA cm-2, Adv. Mater. (2024), Article e2401448, 10.1002/adma.202401448.

[3]

P. Sun, S. Liu, X. Zheng, G. Hu, Q. Zhang, X. Liu, G. Zheng, Y. Chen,Challenges and opportunities of atomic-scales reactive sites in thriving electrochemical CO2 reduction reaction, Nano Today, 55 (2024), Article 102152, 10.1016/j. nantod.2024.102152.

[4]

Waris Chaudhary M.S., A.H. Anwer S. Sultana P.P. Ingole, S.A.A. Nami, M.Z. Khan, A review on development of carbon-based nanomaterials for energy storage devices: Opportunities and challenges, Ener. Fuels, 37 (2023) 19433-19460, doi: 10.1021/acs.energyfuels.3c03213.

[5]

G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Electrocatalysis for CO2 conversion: From fundamentals to value-added products, Chem. Soc. Rev., 50 (2021) 4993-5061, doi: 10.1039/D0CS00071J.

[6]

S.A. Farooqi, A.S. Farooqi, S. Sajjad, C. Yan, A.B. Victor, Electrochemical reduction of carbon dioxide into valuable chemicals: A review, Environ. Chem. Lett., 21 (2023) 1515-1553, doi: 10.1007/s10311-023-01565-7.

[7]

M. Schreier, F. Héroguel, L. Steier, S. Ahmad, J.S. Luterbacher, M.T. Mayer, J. Luo, M. Grätzel, Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO, Nat. Ener., 2 (2017), p. 17087, 10.1038/nenergy.2017.87.

[8]

Y.J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts, ACS Catal., 4 (2014) 3742-3748, doi: 10.1021/cs5012298.

[9]

D. Wang, L. Zhu, J.F. Chen, L. Dai, Liquid marbles based on magnetic upconversion nanoparticles as magnetically and optically responsive miniature reactors for photocatalysis and photodynamic therapy, Angew. Chem. Int. Ed., 55 (2016) 10795-10799, doi: 10.1002/anie.201604781.

[10]

Y. Yao, F. Chen, A. Nie, S.D. Lacey, R.J. Jacob, S. Xu, Z. Huang, K. Fu, J. Dai, L. Salamanca-Riba, M.R. Zachariah, R. Shahbazian-Yassar, L. Hu, In situ high temperature synthesis of single-component metallic nanoparticles, ACS Cent. Sci., 3 (2017) 294-301, doi: 10.1021/acscentsci.6b00374.

[11]

Z. Chen, X. Zeng, S. Wang, A. Cheng, Y. Zhang, Advanced carbon-based nanocatalysts and their application in catalytic conversion of renewable platform molecules, ChemSusChem, 15 (2022), Article e202200411, 10.1002/cssc.202200411.

[12]

Z. Fan, H. Zhang, Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials, Chem. Soc. Rev., 45 (2016) 63-82, doi: 10.1039/C5CS00467E.

[13]

K.D. Gilroy, A. Ruditskiy, H.C. Peng, D. Qin, Y. Xia, Bimetallic nanocrystals: Syntheses, properties, and applications, Chem. Rev., 116 (2016) 10414-10472, doi: 10.1021/acs.chemrev.6b00211.

[14]

K. Yamamoto, T. Imaoka, W.J. Chun, O. Enoki, H. Katoh, M. Takenaga, A. Sonoi, Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions, Nat. Chem., 1 (2009) 397-402, doi: 10.1038/nchem.288.

[15]

S. Bonanni, K. Aït-Mansour, W. Harbich, H. Brune,Reaction-induced cluster ripening and initial size-dependent reaction rates for CO oxidation on Ptn/TiO2 (110)-(1×1), J. Am. Chem. Soc., 136 (2014) 8702-8707, doi: 10.1021/ja502867r.

[16]

A. Wong, Q. Liu, S. Griffin, A. Nicholls, J.R. Regalbuto, Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports, Science, 358 (2017) 1427-1430, doi: 10.1126/science.aao6538.

[17]

J. Feng, L. Chen, P. Song, X. Wu, A. Wang, J. Yuan, Bimetallic AuPd nanoclusters supported on graphitic carbon nitride: One-pot synthesis and enhanced electrocatalysis for oxygen reduction and hydrogen evolution, Int. J. Hydro. Ener., 41 (2016) 8839-8846, doi: 10.1016/j. ijhydene.2016.03.108.

[18]

Y. Wang, J. Ma, X. Cao, S. Chen, L. Dai, J. Zhang, Bionic mineralization toward scalable MOF films for ampere-level biomass upgrading, J. Am. Chem. Soc., 145 (2023) 20624-20633, doi: 10.1021/jacs.3c07790.

[19]

A. Singh, R. Kale, A. Sarkar, V. Juvekar, A. Contractor, Autogenous oxidation/reduction of polyaniline in aqueous sulfuric acid, Processes, 10 (2022), p. 443, 10.3390/pr10030443.

[20]

Y. Yao, Z. Huang, P. Xie, T. Li, S.D. Lacey, M. Jiao, H. Xie, K.K. Fu, R.J. Jacob, D.J. Kline, Y. Yang, M.R. Zachariah, C. Wang, R. Shahbazian-Yassar, L. Hu, Ultrafast, controllable synthesis of sub-nano metallic clusters through defect engineering, ACS Appl. Mater. Interf., 11 (2019) 29773-29779, doi: 10.1021/acsami.9b07198.

[21]

H. Zhuang, T. Zhang, H. Xiao, F. Zhang, P. Han, H. Gu, J. Jiao, W. Chen, Q. Gao, Free-standing cross-linked hollow carbonaceous nanovesicle fibers with atomically dispersed CoN4 electrocatalytic centers driving high-performance Li-S battery, Appl. Catal. B-Environ., 340 (2024), Article 123273, 10.1016/j. apcatb.2023.123273.

[22]

W. Jung, H. Park, J. Jang, D.Y. Kim, D.W. Kim, E. Lim, J.Y. Kim, S. Choi, J. Suk, Y. Kang, I.D. Kim, J. Kim, M. Wu, H. Jung, Polyelemental nanoparticles as catalysts for a Li-O2 battery, ACS Nano, 15 (2021) 4235-4244, doi: 10.1021/acsnano.0c06528.

[23]

Y. Yao, Z. Huang, P. Xie, L. Wu, L. Ma, T. Li, Z. Pang, M. Jiao, Z. Liang, J. Gao, Y. He, D.J. Kline, M.R. Zachariah, C. Wang, J. Lu, T. Wu, T. Li, C. Wang, R. Shahbazian-Yassar, L. Hu, High temperature shockwave stabilized single atoms, Nat. Nanotechnol, 14 (2019) 851-857, doi: 10.1038/s41565-019-0518-7.

[24]

J. Yang, J. Xian, Q. Liu, Y. Sun, G. Li, Bi nanoparticles in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries, J. Energy. Chem., 69 (2022) 524-530, doi: 10.1016/j. jechem.2022.01.026.

[25]

X. Cao, B. Wulan, Y. Wang, J. Ma, S. Hou, J. Zhang,Atomic bismuth induced ensemble sites with indium towards highly efficient and stable electrocatalytic reduction of carbon dioxide, Sci. Bull., 68 (2023) 1008-1016, doi: 10.1016/j. scib.2023.04.026.

[26]

Z. Liu, C. Liu, S. Mao, X. Huang, Heterogeneous structure of Sn/SnO2 constructed via phase engineering for efficient and stable CO2 reduction, ACS Appl. Mater. Interf., 15 (2023) 7529-7537, doi: 10.1021/acsami.2c18522.

[27]

K. Zhou, S. Wang, X. Guo, G. Zhong, Z. Liu, Y. Ma, H. Wang, Y. Bao, D. Han, L. Niu, Bismuth nanoparticles encapsulated in nitrogen-rich porous carbon nanofibers as a high-performance anode for aqueous alkaline rechargeable batteries, Small, 18 (2022), Article e2105770, 10.1002/smll.202105770.

[28]

Z. Li, C. Zhang, J. Bu, L. Zhang, L. Cheng, M. Wu,Constructing a novel carbon skeleton to anchor Sn/SnO2 nanodots for flexible supercapacitor with excellent rate capability, Carbon, 194 (2022) 197-206, doi: 10.1016/j. carbon.2022.03.079.

[29]

S. Yang, S. Xu, J. Tong, D. Ding, G. Wang, R. Chen, P. Jin, X.C. Wang, Overlooked role of nitrogen dopant in carbon catalysts for peroxymonosulfate activation: Intrinsic defects or extrinsic defects?, Appl. Catal. B-Environ., 295 (2021), Article 120291, 10.1016/j. apcatb.2021.120291.

[30]

J. Yang, X. Wang, Y. Qu, X. Wang, H. Huo, Q. Fan, J. Wang, L.M. Yang, Y. Wu, Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction, Adv. Ener. Mater., 10 (2020), Article 2001709, 10.1002/aenm.202001709.

[31]

S.H. Li, S. Hu, H. Liu, J. Liu, X. Kang, S. Ge, Z. Zhang, Q. Yu, B. Liu, Two-dimensional metal coordination polymer derived Indium nanosheet forefficient carbon dioxidereduction to formate, ACS Nano, 17 (2023) 9338-9346, doi: 10.1021/acsnano.3c01059.

[32]

S. Gao, N. Wang, S. Li, D. Li, Z. Cui, G. Yue, J. Liu, X. Zhao, L. Jiang, Y. Zhao, A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries, Angew. Chem. Int. Ed., 59 (2020) 2465-2472, doi: 10.1002/anie.201913170.

[33]

P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen, F. Yang, L. Zhou, K. Qi, H. Liu, B.Y. Xia, Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate, ACS Catal., 10 (2019) 743-750, doi: 10.1021/acscatal.9b04043.

[34]

B. Wulan, L.L. Zhao, D.X. Tan, X.Y. Cao, J.Z. Ma, J.T. Zhang, Electrochemically driven interfacial transformation for high-performing solar-to-fuel electrocatalytic conversion, Adv. Ener. Mater., 12 (2022), Article 2103960, 10.1002/aenm.202103960.

[35]

Y. Zhang, F. Li, J. Dong, K. Jia, T. Sun, L. Xu, Recent advances in designing efficient electrocatalysts for electrochemical carbon dioxide reduction to formic acid/formate, J. Electroana. Chem., 928 (2023), Article 117018, 10.1016/j. jelechem.2022.117018.

[36]

W.b. Li, C. Yu, X.Y. Tan, S. Cui, Y.F. Zhang, J.S. Qiu, Recent advances in the electroreduction of carbon dioxide to formic acid over carbon-based materials, New Carb. Mater., 37 (2022) 277-287, 10.1016/s1872-5805(22)60592-4.

[37]

W. Xie, T. Yang, N. Tian, X.H. Liu, J. Chen, Cu nanoparticles decorating N-doped erythrocyte-shaped carbon nanostructures for electrochemical CO2 reduction, Ener. Fuels, 36 (2022) 958-964, doi: 10.1021/acs.energyfuels.1c03823.

[38]

Q. Yang, J. Zhou, G. Zhang, C. Guo, M. Li, Y. Zhu, Y. Qian, Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries, J. Mater. Chem. A, 5 (2017) 12144-12148, doi: 10.1039/C7TA03060F.

[39]

P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B.Y. Xia, Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate, Angew. Chem. Int. Ed., 59 (2020) 10807-10813, doi: 10.1002/anie.202000657.

[40]

H. Jiang, R. Luo, Y. Li, W. Chen, Recent advances in solid-liquid-gas three-phase interfaces in electrocatalysis for energy conversion and storage, EcoMat, 4 (2022), p. 12199, 10.1002/eom2.12199.

[41]

Y. Duan, K. Liu, Q. Zhang, J. Yan, Q. Jiang, Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst, Small Methods, 4 (2020), Article 1900846, 10.1002/smtd.201900846.

[42]

C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc., 137 (2015) 4347-4357, doi: 10.1021/ja510442p.

[43]

Y. Qiao, W. Lai, K. Huang, T. Yu, Q. Wang, L. Gao, Z. Yang, Z. Ma, T. Sun, M. Liu, C. Lian, H. Huang, Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid, ACS Catal., 12 (2022) 2357-2364, doi: 10.1021/acscatal.1c05135.

[44]

B. Wulan, X. Cao, D. Tan, J. Ma, J. Zhang, To stabilize oxygen on In/In2O3 heterostructure via Joule heating for efficient electrocatalytic CO2 reduction, Adv. Funct. Mater., 33 (2023), Article 2209114, 10.1002/adfm.202209114.

[45]

X. Cao, Y. Wang, D. Tan, B. Wulan, J. Ma, W. Guo, J. Zhang, Stepwise dispersion of nickel species for efficient coupling of electrocatalytic redox reactions, Chem. Eng. J., 454 (2023), Article 140062, 10.1016/j. cej.2022.140062.

[46]

W. Wang, X. Wang, Z. Ma, Y. Wang, Z. Yang, J. Zhu, L. Lv, H. Ning, N. Tsubaki, M. Wu, Carburized In2O3 nanorods endow CO2 electroreduction to formate at 1 A cm-2, ACS Catal., 13 (2023) 796-802, doi: 10.1021/acscatal.2c05006.

[47]

X. Cao, Y. Tian, J. Ma, W. Guo, W. Cai, J. Zhang, Strong p-d orbital hybridization on bismuth nanosheets for high performing CO2 electroreduction, Adv. Mater., 36 (2024), Article 2309648, 10.1002/adma.202309648.

AI Summary AI Mindmap
PDF (2875KB)

250

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/