Advances in lithium-ion battery recycling: Strategies, pathways, and technologies

Ziwei Tong , Mingyue Wang , Zhongchao Bai , Huijun Li , Nana Wang

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 30 -47.

PDF (5007KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 30 -47. DOI: 10.1016/j.chphma.2024.05.005
Research article
research-article

Advances in lithium-ion battery recycling: Strategies, pathways, and technologies

Author information +
History +
PDF (5007KB)

Abstract

The use of lithium-ion batteries in portable electronic devices and electric vehicles has become well-established, and battery demand is rapidly increasing annually. While technological innovations in electrode materials and battery performance have been pursued, the environmental threats and resource wastage posed by the resulting surge in used batteries have been overlooked. Spent batteries are technically inoperable but contain excess metal inside the structure, making recycling essential for environmental protection and recovery of scarce resources. The battery recycling industry has gradually emerged under the influence of government implementation and ecological protection trends. However, the annual recycling volume is still insufficient compared to the output volume of used batteries. Therefore, more recycling plants and advanced technologies are imperative to improve recycling efficiency. This article summarizes pretreatment, pyrometallurgical, and hydrometallurgical processes and technologies in three major parts, analyzes their applicability and environmental friendliness using industrial examples, highlights their technical shortcomings and problems, and emphasizes the bright future of battery recycling.

Keywords

Spent lithium-ion batteries / Recycling process / Pyrometallurgy / Hydrometallurgy / Metal recovery

Cite this article

Download citation ▾
Ziwei Tong, Mingyue Wang, Zhongchao Bai, Huijun Li, Nana Wang. Advances in lithium-ion battery recycling: Strategies, pathways, and technologies. ChemPhysMater, 2025, 4(1): 30-47 DOI:10.1016/j.chphma.2024.05.005

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Ziwei Tong: Writing - review & editing, Writing - original draft. Mingyue Wang: Writing - review & editing. Zhongchao Bai: Supervision. Huijun Li: Supervision. Nana Wang: Writing - review & editing, Supervision.

Acknowledgements

This article is dedicated to Professor Yitai Qian, the supervisor of Nana Wang and Zhongchao Bai.

References

[1]

J.T. Warner, Lithium-Ion Battery Chemistries: A Primer, (first ed.ed.), Elsevier, Amsterdam (2019).

[2]

M. Placek,Projected global battery demand from 2020 to 2030. 2022 (accessed 25 August 2022). https://www.statista.com/statistics/1103218/global-battery-demand-forecast/

[3]

T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: Outlook on present, future, and hybridized technologies, J. Mater. Chem. A, 7 (2019) 2942-2964, doi: 10.1039/c8ta10513h.

[4]

C. Jamasmie, Recycled lithium batteries market to hit $6 billion by 2030. 2021 (accessed 29 September 2021). https://www.mining.com/recycled-lithium-batteries-market-to-hit-6-billion-by-2030/

[5]

V. Agarwal, M.K. Khalid, A. Porvali, B.P. Wilson, M. Lundström, Recycling of spent NiMH batteries: Integration of battery leach solution into primary Ni production using solvent extraction, Sustain. Mater. Technol., 22 (2019), p. e00121, 10.1016/j. susmat.2019.e00121.

[6]

L. Brückner, J. Frank, T. Elwert, Industrial recycling of lithium-ion batteries-A critical review of metallurgical process routes, Metals, 10 (2020), p. 1107, 10.3390/met10081107.

[7]

J. Yu, Q. Tan, J. Li, Exploring a green route for recycling spent lithium-ion batteries: Revealing and solving deep screening problem, J. Clean. Prod., 255 (2020), Article 120269, 10.1016/j. jclepro.2020.120269.

[8]

M. Kaya,State-of-the-art lithium-ion battery recycling technologies, Circ. Econ., 1 (2022), Article 100015, 10.1016/j. cec.2022.100015.

[9]

W. Yu, Y. Guo, S. Xu, Y. Yang, Y. Zhao, J. Zhang,Comprehensive recycling of lithium-ion batteries: Fundamentals, pretreatment, and perspectives, Energy Storage Mater., 54 (2023) 172-220, doi: 10.1016/j. ensm.2022.10.033.

[10]

E. Fan, L. Li, Z. Wang, J. Lin, Y. Huang, Y. Yao, F. Wu, Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects, Chem. Rev., 120 (2020) 7020-7063, doi: 10.1021/acs.chemrev.9b00535.

[11]

X. Wang, G. Gaustad, C.W. Babbitt,Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation, Waste Manag., 51 (2016) 204-213, doi: 10.1016/j. wasman.2015.10.026.

[12]

Bebat,Sorting batteries? This is how we do it. 2024 (accessed 2024). https://www.bebat.be/en/blog/how-sorting-batteries

[13]

A.M. Bernardes, D.C.R. Espinosa, J.S. Tenório,Recycling of batteries: A review of current processes and technologies, J. Power Sources, 130 (2004) 291-298, doi: 10.1016/j. jpowsour.2003.12.026.

[14]

R. Recycling, Electronics processor begins recycling robotics. 2024 (accessed 5 March 2024). https://resource-recycling.com/recycling/2024/03/05/electronics-processor-begins-recycling-robotics/

[15]

L. Systems, Pioneering X-ray NDT. 2024 (accessed 2024). https://www.linevsystems.com/products/x-ray-ndt-imaging/

[16]

S. Saxena, C.Le Floch, J. MacDonald, S. Moura,Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models, J. Power Sources, 282 (2015) 265-276, doi: 10.1016/j. jpowsour.2015.01.072.

[17]

S. Ojanen, M. Lundström, A. Santasalo-Aarnio, R. Serna-Guerrero,Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling, Waste Manag., 76 (2018) 242-249, doi: 10.1016/j. wasman.2018.03.045.

[18]

J. Xiao, J. Guo, L. Zhan, Z. Xu, A cleaner approach to the discharge process of spent lithium ion batteries in different solutions, J. Clean. Prod., 255 (2020), Article 120064, 10.1016/j. jclepro.2020.120064.

[19]

D. Gao, Y. Zhou, T. Wang, Y. Wang, A method for predicting the remaining useful life of lithium-ion batteries based on particle filter using kendall rank correlation coefficient, Energies, 13 (2020), p. 4183, 10.3390/en13164183.

[20]

J. Li, G. Wang, Z. Xu,Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries, Waste Manag., 52 (2016) 221-227, doi: 10.1016/j. wasman.2016.03.011.

[21]

T. Zhang, Y. He, F. Wang, L. Ge, X. Zhu, H. Li,Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques, Waste Manag., 34 (2014) 1051-1058, doi: 10.1016/j. wasman.2014.01.002.

[22]

H. Wang, G. Qu, J. Yang, S. Zhou, B. Li, Y. Wei,An effective and cleaner discharge method of spent lithium batteries, J. Energy Storage, 54 (2022), Article 105383, 10.1016/j. est.2022.105383.

[23]

S. Rothermel, M. Evertz, J. Kasnatscheew, X. Qi, M. Grützke, M. Winter, S. Nowak, Graphite recycling from spent lithium-ion batteries, ChemSusChem., 9 (2016) 3473-3484, doi: 10.1002/cssc.201601062.

[24]

R. Sommerville, J. Shaw-Stewart, V. Goodship, N. Rowson, E. Kendrick, A review of physical processes used in the safe recycling of lithium ion batteries, Sustain. Mater. Technol., 25 (2020), p. e00197, 10.1016/j. susmat.2020.e00197.

[25]

C. Lei, I. Aldous, J.M. Hartley, D.L. Thompson, S. Scott, R. Hanson, P.A. Anderson, E. Kendrick, R. Sommerville, A.P. Abbott, Lithium ion battery recycling using high-intensity ultrasonication, Green. Chem., 23 (2021) 4710-4715, doi: 10.1039/D1GC01623G.

[26]

H. Bae, Y. Kim, Technologies of lithium recycling from waste lithium ion batteries: A review, Mater. Adv., 2 (2021) 3234-3250, doi: 10.1039/D1MA00216C.

[27]

D.M. Werner, T. Mütze, U.A. Peuker, Influence of cell opening methods on electrolyte removal during processing in lithium-ion battery recycling, Metals, 12 (2022), p. 663, 10.3390/met12040663.

[28]

D.L. Thompson, J.M. Hartley, S.M. Lambert, M. Shiref, G.D.J. Harper, E. Kendrick, P. Anderson, K.S. Ryder, L. Gaines, A.P. Abbott, The importance of design in lithium ion battery recycling-a critical review, Green. Chem., 22 (2020) 7585-7603, doi: 10.1039/D0GC02745F.

[29]

Fraunhofer, New technologies for the disassembly of electric vehicle batteries and motors. 2023 (accessed 22 May 2023). https://www.ipa.fraunhofer.de/en/press-media/press_releases/new-technologies-for-the-disassembly-of-electric-vehicle-batteries-and-motors.html

[30]

Itoinsider, Robotic battery disassembly: A key to the UK's net zero future. 2023 (accessed 19 May 2023). https://www.iotinsider.com/iot-insights/robotic-battery-disassembly-a-key-to-the-uks-net-zero-future/

[31]

L. Lander, C. Tagnon, V. Nguyen-Tien, E. Kendrick, R.J.R. Elliott, A.P. Abbott, J.S. Edge, G.J. Offer,Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs, Appl. Energy, 331 (2023), Article 120437, 10.1016/j. apenergy.2022.120437.

[32]

J. Schmitt, H. Haupt, M. Kurrat, A. Raatz, Disassembly automation for lithium-ion battery systems using a flexible gripper, 2011 15th Int, Conf. Adv. Robot. (2011) 291-297, doi: 10.1109/ICAR.2011.6088599.

[33]

K. Wegener, W. Chen, F. Dietrich, K. Dröder, S. Kara,Robot assisted disassembly for the recycling of electric vehicle batteries, Procedia CIRP, 29 (2015) 716-721, doi: 10.1016/j. procir.2015.02.051.

[34]

J. Hathaway, A. Shaarawy, C. Akdeniz, A. Aflakian, R. Stolkin, A. Rastegarpanah, Towards reuse and recycling of lithium-ion batteries: Tele-robotics for disassembly of electric vehicle batteries, Front. Robot. AI, 10 (2023), Article 1179296, 10.3389/frobt.2023.1179296.

[35]

H. Wang, B. Friedrich, Development of a highly efficient hydrometallurgical recycling process for automotive Li-Ion batteries, J. Sustain. Metall., 1 (2015) 168-178, doi: 10.1007/s40831-015-0016-6.

[36]

M. Mohr, J.F. Peters, M. Baumann, M. Weil, Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes, J. Ind. Ecol., 24 (2020) 1310-1322, doi: 10.1111/jiec.13021.

[37]

J. Jung, P. Sui, J. Zhang, HydrometallurgicalRecycling of Lithium-Ion Battery Materials, ( firsted.), Boca Raton (CRC Press, 2023).

[38]

D. Marinos, B. Mishra, Processingof Lithium-Ion Batteries for Zero-Waste Materials Recovery, ( firsted.), Boca Raton (CRC Press, 2016).

[39]

G. Tian, G. Yuan, A. Aleksandrov, T. Zhang, Z. Li, A.M. Fathollahi-Fard, M. Ivanov, Recycling of spent lithium-ion batteries: A comprehensive review for identification of main challenges and future research trends, Sustain. Energy Technol. Assess., 53 (2022), Article 102447, 10.1016/j. seta.2022.102447.

[40]

B. Yan, E. Ma, J. Wang,Research on the high-efficiency crushing, sorting and recycling process of column-shaped waste lithium batteries, Sci. Total Environ., 864 (2023), Article 161081, 10.1016/j. scitotenv.2022.161081.

[41]

F. Treffer, Lithium-ion Battery Recycling, Springer, Berlin (2018) first ed.ed.

[42]

J. Li, X. He, X. Zeng, Designing and examining e-waste recycling process: Methodology and case studies, Environ. Technol., 38 (2017) 652-660, doi: 10.1080/09593330.2016.1207711.

[43]

D. Latini, M. Vaccari, M. Lagnoni, M. Orefice, F. Mathieux, J. Huisman, L. Tognotti, A. Bertei,A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling, J. Power Sources, 546 (2022), Article 231979, 10.1016/j. jpowsour.2022.231979.

[44]

L. Alcaraz, C. Diaz-Guerra, J. Calbet, M.L. Lopez, F.A. Lopez, Obtaining and characterization of highly crystalline recycled graphites from different types of spent batteries, Materials, 15 (2022), p. 3246, 10.3390/ma15093246.

[45]

G. Zhang, Z. Du, Y. He, H. Wang, W. Xie, T. Zhang, A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries, Sustainability, 11 (2019), p. 2363, 10.3390/su11082363.

[46]

G. Prabaharan, S.P. Barik, N. Kumar, L. Kumar,Electrochemical process for electrode material of spent lithium ion batteries, Waste Manag., 68 (2017) 527-533, doi: 10.1016/j. wasman.2017.07.007.

[47]

C.M. Costa, J.C. Barbosa, R. Gonçalves, H. Castro, F. Del Campo, S. Lanceros-Méndez,Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities, Energy Storage Mater., 37 (2021) 433-465, doi: 10.1016/j. ensm.2021.02.032.

[48]

D. Yu, Z. Huang, B. Makuza, X. Guo, Q. Tian,Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review, Miner. Eng., 173 (2021), Article 107218, 10.1016/j. mineng.2021.107218.

[49]

K. Meng, G. Xu, X. Peng, K. Youcef-Toumi, J. Li, Intelligent disassembly of electric-vehicle batteries: A forward-looking overview, Resour. Conserv. Recycl., 182 (2022), Article 106207, 10.1016/j. resconrec.2022.106207.

[50]

C. Liu, J. Lin, H. Cao, Y. Zhang, Z. Sun, Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, J. Clean. Prod., 228 (2019) 801-813, doi: 10.1016/j. jclepro.2019.04.304.

[51]

J. Klimko, D. Oráč, A. Miškufová, C. Vonderstein, C. Dertmann, M. Sommerfeld, B. Friedrich, T. Havlík, A combined pyro-and hydrometallurgical approach to recycle pyrolyzed lithium-ion battery black mass part 2: Lithium recovery from Li enriched slag-thermodynamic study, kinetic study, and dry digestion, Metals, 10 (2020), p. 1558, 10.3390/met10111558.

[52]

A. Kwade, M. Möller, J. Müller, J. Hesselbach, S. Zellmer, S. Doose, J. Mayer, P. Michalowski, M. Powell, S. Breitung-Faes, Comminution and classification as important process steps for the circular production of lithium batteries, KONA Powder Part J., 40 (2023) 50-73, doi: 10.14356/kona.2023006.

[53]

G. Lombardo, B. Ebin, M.R.S.J. Foreman, B.-M. Steenari, M. Petranikova, Incineration of EV lithium-ion batteries as a pretreatment for recycling-determination of the potential formation of hazardous by-products and effects on metal compounds, J. Hazard. Mater., 393 (2020), Article 122372, 10.1016/j. jhazmat.2020.122372.

[54]

J. Neumann, M. Petranikova, M. Meeus, J.D. Gamarra, R. Younesi, M. Winter, S. Nowak, Recycling of lithium-ion batteries-current state of the art, circular economy, and next generation recycling, Adv. Energy Mater., 12 (2022), Article 2102917, 10.1002/aenm.202102917.

[55]

J. Yang, F. Firsbach, I. Sohn, Pyrometallurgical processing of ferrous slag “co-product” zero waste full utilization: A critical review, Resour. Conserv. Recycl., 178 (2022), Article 106021, 10.1016/j. resconrec.2021.106021.

[56]

X. Hu, E. Mousa, Y. Tian, G. Ye,Recovery of Co, Ni, Mn, and Li from Li-ion batteries by smelting reduction—Part I: a laboratory-scale study, J. Power Sources, 483 (2021), Article 228936, 10.1016/j. jpowsour.2020.228936.

[57]

G. Ren, S. Xiao, M. Xie, B. Pan, J. Chen, F. Wang, X. Xia, Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system, Trans. Nonferrous Met. Soc. China, 27 (2017) 450-456, 10.1016/S1003-6326(17)60051-7.

[58]

A. Sonoc, J. Jeswiet, V.K. Soo,Opportunities to improve recycling of automotive lithium ion batteries, Procedia CIRP, 29 (2015) 752-757, doi: 10.1016/j. procir.2015.02.039.

[59]

W. Yu, Y. Zhang, J. Hu, J. Zhou, Z. Shang, X. Zhou, S. Xu, Controlled carbothermic reduction for enhanced recovery of metals from spent lithium-ion batteries, Resour. Conserv. Recycl., 194 (2023), Article 107005, 10.1016/j. resconrec.2023.107005.

[60]

G. Lombardo, B. Ebin, M.R.S. Foreman, B.M. Steenari, M. Petranikova, Chemical transformations in Li-ion battery electrode materials by carbothermic reduction, ACS Sustain. Chem. Eng., 7 (2019) 13668-13679, doi: 10.1021/acssuschemeng.8b06540.

[61]

J. Xiao, R. Gao, L. Zhan, Z. Xu, Unveiling the control mechanism of the carbothermal reduction reaction for waste Li-ion battery recovery: Providing instructions for its practical applications, ACS Sustain. Chem. Eng., 9 (2021) 9418-9425, doi: 10.1021/acssuschemeng.1c02628.

[62]

S. Windisch-Kern, A. Holzer, L. Wiszniewski, H. Raupenstrauch, Investigation of potential recovery rates of nickel, manganese, cobalt, and particularly lithium from NMC-type cathode materials (LiNixMnyCozO2) by carbo-thermal reduction in an inductively heated carbon bed reactor, Metals, 11 (2021), p. 1844, 10.3390/met11111844.

[63]

W. Cheng, Z. Li, F. Cheng, Solubility of Li2CO3 in Na-K-Li-Cl brines from 20 to 90 °C, J. Chem. Thermodyn., 67 (2013) 74-82, doi: 10.1016/j. jct.2013.07.024.

[64]

M. Li, D. Constantinescu, L. Wang, A. Mohs, J. Gmehling, Solubilities of NaCl, KCl, LiCl, and LiBr in methanol, ethanol, acetone, and mixed solvents and correlation using the LIQUAC model, Ind. Eng. Chem. Res., 49 (2010) 4981-4988, doi: 10.1021/ie100027c.

[65]

X. Zhang, X. Zeng, Y. Shan, Z. Li, Y. Zeng, E. Asselin, Solubility and modeling of Li2SO4·H2O in aqueous H2SO4-MgSO4 solutions for lithium extraction from spodumene, J. Chem. Eng. Data, 67 (2022) 919-931, doi: 10.1021/acs.jced.2c00022.

[66]

M. Li, L. Wang, K. Wang, B. Jiang, J. Gmehling,Experimental measurement and modeling of solubility of LiBr and LiNO3 in methanol, ethanol, 1-propanol, 2-propanol and 1-butanol, Fluid Phase Equilib., 307 (2011) 104-109, doi: 10.1016/j. fluid.2011.03.017.

[67]

X. Qu, B. Zhang, J. Zhao, B. Qiu, X. Chen, F. Zhou, X. Li, S. Gao, D. Wang, H. Yin, Salt-thermal methods for recycling and regenerating spent lithium-ion batteries: A review, Green Chem., 25 (2023) 2992-3015, doi: 10.1039/D2GC04620B.

[68]

J. You, Z. Qin, G. Wang, M. Rao, J. Luo, Z. Peng, S. Zou, G. Li, Recycling valuable metals from spent lithium-ion battery cathode materials based on microwave-assisted hydrogen reduction followed by grind-leaching and magnetic separation, J. Clean. Prod., 428 (2023), Article 139488, 10.1016/j. jclepro.2023.139488.

[69]

S. Pindar, N. Dhawan, Recycling of mixed discarded lithium-ion batteries via microwave processing route, Sustain. Mater. Technol., 25 (2020), p. e00157, 10.1016/j. susmat.2020.e00157.

[70]

S. Maroufi, M. Assefi, R.K. Nekouei, V. Sahajwalla, Recovery of lithium and cobalt from waste lithium-ion batteries through a selective isolation-suspension approach, Sustain. Mater. Technol., 23 (2019), p. e00139, 10.1016/j. susmat.2019.e00139.

[71]

H.J. Kim, T. Krishna, K. Zeb, V. Rajangam, C.V.V.M. Gopi, S. Sambasivam, K.V.G. Raghavendra, A comprehensive review of Li-ion battery materials and their recycling techniques, Electronics, 9 (2020), p. 1161, 10.3390/electronics9071161.

[72]

Z. Liang, C. Cai, G. Peng, J. Hu, H. Hou, B. Liu, S. Liang, K. Xiao, S. Yuan, J. Yang, Hydrometallurgical recovery of spent lithium ion batteries: Environmental strategies and sustainability evaluation, ACS Sustain. Chem. Eng., 9 (2021) 5750-5767, doi: 10.1021/acssuschemeng.1c00942.

[73]

N. Akhmetov, A. Manakhov, A.S. Al-Qasim, Li-ion battery cathode recycling: An emerging response to growing metal demand and accumulating battery waste, Electronics, 12 (2023), p. 1152, 10.3390/electronics12051152.

[74]

W. Gao, C. Liu, H. Cao, X. Zheng, X. Lin, H. Wang, Y. Zhang, Z. Sun,Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries, Waste Manag., 75 (2018) 477-485, doi: 10.1016/j. wasman.2018.02.023.

[75]

J. Li, P. Shi, Z. Wang, Y. Chen, C.C. Chang, A combined recovery process of metals in spent lithium-ion batteries, Chemosphere, 77 (2009) 1132-1136, doi: 10.1016/j. chemosphere.2009.08.040.

[76]

A. Chernyaev, Y. Zou, B.P. Wilson, M. Lundström, The interference of copper, iron and aluminum with hydrogen peroxide and its effects on reductive leaching of LiNi1/3Mn1/3Co1/3O2, Sep. Purif. Technol., 281 (2022), Article 119903, 10.1016/j. seppur.2021.119903.

[77]

L.F. Guimarães, A.B. Junior, D.C.R. Espinosa,Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent, Miner. Eng., 183 (2022), Article 107597, 10.1016/j. mineng.2022.107597.

[78]

P. Meshram, Abhilash, B.D. Pandey, T.R. Mankhand, H. Deveci,Acid baking of spent lithium ion batteries for selective recovery of major metals: A two-step process, J. Ind. Eng. Chem., 43 (2016) 117-126, doi: 10.1016/j. jiec.2016.07.056.

[79]

M.M. Cerrillo-Gonzalez, M. Villen-Guzman, C. Vereda-Alonso, J.M. Rodríguez-Maroto, J.M. Paz-Garcia, Acid leaching of LiCoO2 enhanced by reducing agent. Model formulation and validation, Chemosphere, 287 (2022), Article 132020, 10.1016/j. chemosphere.2021.132020.

[80]

L. Li, Y. Bian, X. Zhang, Q. Xue, E. Fan, F. Wu, R. Chen,Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study, J. Power Sources, 377 (2018) 70-79, doi: 10.1016/j. jpowsour.2017.12.006.

[81]

C. Peng, F. Liu, A.T. Aji, B.P. Wilson, M. Lundström,Extraction of Li and Co from industrially produced Li-ion battery waste - Using the reductive power of waste itself, Waste Manag., 95 (2019) 604-611, doi: 10.1016/j. wasman.2019.06.048.

[82]

J. Kang, G. Senanayake, J. Sohn, S.M. Shin,Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272, Hydrometallurgy, 100 (2010) 168-171, doi: 10.1016/j. hydromet.2009.10.010.

[83]

Yuliusman R. Fajaryanto A. Nurqomariah, Silvia, Acid leaching and kinetics study of cobalt recovery from spent lithium-ion batteries with nitric acid, E3S Web Conf., 67 (2018), p. 03025, 10.1051/e3sconf/20186703025.

[84]

L. Li, R. Chen, F. Sun, F. Wu, J. Liu,Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process, Hydrometallurgy, 108 (2011) 220-225, doi: 10.1016/j. hydromet.2011.04.013.

[85]

E.G. Pinna, M.C. Ruiz, M.W. Ojeda, M.H. Rodriguez, Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors, Hydrometallurgy, 167 (2017) 66-71, doi: 10.1016/j. hydromet.2016.10.024.

[86]

R. Golmohammadzadeh, F. Rashchi, E. Vahidi,Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects, Waste Manag., 64 (2017) 244-254, doi: 10.1016/j. wasman.2017.03.037.

[87]

L. Li, J.B. Dunn, X. Zhang, L. Gaines, R. Chen, F. Wu, K. Amine,Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, J. Power Sources, 233 (2013) 180-189, doi: 10.1016/j. jpowsour.2012.12.089.

[88]

L. Li, J. Ge, F. Wu, R. Chen, S. Chen, B. Wu, Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant, J. Hazard. Mater., 176 (2010) 288-293, doi: 10.1016/j. jhazmat.2009.11.026.

[89]

M. Yu, Z. Zhang, F. Xue, B. Yang, G. Guo, J. Qiu, A more simple and efficient process for recovery of cobalt and lithium from spent lithium-ion batteries with citric acid, Sep. Purif. Technol., 215 (2019) 398-402, doi: 10.1016/j. seppur.2019.01.027.

[90]

L. Li, Y. Bian, X. Zhang, Y. Yao, Q. Xue, E. Fan, F. Wu, R. Chen,A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries, Waste Manag., 85 (2019) 437-444, doi: 10.1016/j. wasman.2019.01.012.

[91]

A. Verma, R. Kore, D.R. Corbin, M.B. Shiflett, Metal recovery using oxalate chemistry: A technical review, Ind. Eng. Chem. Res., 58 (2019) 15381-15393, doi: 10.1021/acs.iecr.9b02598.

[92]

L. Sun, K. Qiu,Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manag., 32 (2012) 1575-1582, doi: 10.1016/j. wasman.2012.03.027.

[93]

L. Yao, H. Yao, G. Xi, Y. Feng, Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using d, l-malic acid, RSC. Adv., 6 (2016) 17947-17954, doi: 10.1039/C5RA25079J.

[94]

X. Cheng, G. Guo, Y. Cheng, M. Liu, J. Ji, Effect of hydrogen peroxide on the recovery of valuable metals from spent LiNi0.6Co0.2Mn0.2O2 batteries, Energy Technol., 10 (2022), Article 2200039, 10.1002/ente.202200039.

[95]

S. Refly, O. Floweri, T.R. Mayangsari, A. Sumboja, S.P. Santosa, T. Ogi, F. Iskandar, Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes, ACS Sustain. Chem. Eng., 8 (2020) 16104-16114, doi: 10.1021/acssuschemeng.0c01006.

[96]

L. Li, J. Lu, Y. Ren, X. Zhang, R. Chen, F. Wu, K. Amine,Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries, J. Power Sources, 218 (2012) 21-27, doi: 10.1016/j. jpowsour.2012.06.068.

[97]

E.A. Dalini, G. Karimi, S. Zandevakili, M. Goodarzi, A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries, Miner. Process. Extr. Metall. Rev., 42 (2021) 451-472, doi: 10.1080/08827508.2020.1781628.

[98]

R. Sattar, S. Ilyas, H.N. Bhatti, A. Ghaffar, Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries, Sep. Purif. Technol., 209 (2019) 725-733, doi: 10.1016/j. seppur.2018.09.019.

[99]

J.J. Roy, B. Cao, S. Madhavi, A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282 (2021), Article 130944, 10.1016/j. chemosphere.2021.130944.

[100]

N. Bahaloo-Horeh, S.M. Mousavi, M. Baniasadi, Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries, J. Clean. Prod., 197 (2018) 1546-1557, doi: 10.1016/j. jclepro.2018.06.299.

[101]

Z. Liu, X. Liao, Y. Zhang, S. Li, M. Ye, Q. Gan, X. Fang, Z. Mo, Y. Huang, Z. Liang, W. Dai, S. Sun, A highly efficient process to enhance the bioleaching of spent lithium-ion batteries by bifunctional pyrite combined with elemental sulfur, J. Environ. Manag., 351 (2024), Article 119954, 10.1016/j. jenvman.2023.119954.

[102]

N. Sadeghi, F. Vakilchap, Z. Ilkhani, S.M. Mousavi, Assessment of the visible light effect on one-step bacterial leaching of metals from spent lithium-ion batteries cathode pretreated by a bio-chemical lixiviant, J. Clean. Prod., 436 (2024), Article 140432, 10.1016/j. jclepro.2023.140432.

[103]

G. Zeng, S. Luo, X. Deng, L. Li, C. Au,Influence of silver ions on bioleaching of cobalt from spent lithium batteries, Miner. Eng., 49 (2013) 40-44, doi: 10.1016/j. mineng.2013.04.021.

[104]

J.J. Roy, E.J.J. Tang, M.P. Do, B. Cao, M. Srinivasan, Closed-loop graphite recycling from spent lithium-ion batteries through bioleaching, ACS Sustain. Chem. Eng., 11 (2023) 6567-6577, doi: 10.1021/acssuschemeng.2c07262.

[105]

E. Gerold, F. Kadisch, R. Lerchbammer, H. Antrekowitsch, Bio-metallurgical recovery of lithium, cobalt, and nickel from spent NMC lithium ion batteries: A comparative analysis of organic acid systems, J. Hazard. Mater. Adv., 13 (2024), Article 100397, 10.1016/j. hazadv.2023.100397.

[106]

X. Zheng, W. Gao, X. Zhang, M. He, X. Lin, H. Cao, Y. Zhang, Z. Sun,Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite, Waste Manag., 60 (2017) 680-688, doi: 10.1016/j. wasman.2016.12.007.

[107]

L. Chen, X. Tang, Y. Zhang, L. Li, Z. Zeng, Y. Zhang, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108 (2011) 80-86, doi: 10.1016/j. hydromet.2011.02.010.

[108]

W. Lv, Z. Wang, H. Cao, X. Zheng, W. Jin, Y. Zhang, Z. Sun,A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride, Waste Manag., 79 (2018) 545-553, doi: 10.1016/j. wasman.2018.08.027.

[109]

S. Wang, C. Wang, F. Lai, F. Yan, Z. Zhang,Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts, Waste Manag., 102 (2020) 122-130, doi: 10.1016/j. wasman.2019.10.017.

[110]

X. Meng, K.N. Han, The principles and applications of ammonia leaching of metals - A review, Miner. Process. Extr. Metall. Rev., 16 (1996) 23-61, doi: 10.1080/08827509608914128.

[111]

Y. Qi, F. Meng, X. Yi, J. Shu, M. Chen, Z. Sun, S. Sun, F. Xiu, A novel and efficient ammonia leaching method for recycling waste lithium ion batteries, J. Clean. Prod., 251 (2020), Article 119665, 10.1016/j. jclepro.2019.119665.

[112]

W. Zhang, X. Li, Y. Jin, G. Chen, Y. Li, S. Zeng, Nano-Co3O4 anchored helical carbon nanofibers as an anode material for Li-ion batteries, J. Electroanal. Chem., 922 (2022), Article 116730, 10.1016/j. jelechem.2022.116730.

[113]

J. Qing, X. Wu, L. Zeng, W. Guan, Z. Cao, Q. Li, M. Wang, G. Zhang, S. Wu, A Novel approach to recycling of valuable metals from spent lithium-ion batteries using hydrometallurgy, focused on preferential extraction of lithium, J. Clean. Prod., 431 (2023), Article 139645, 10.1016/j. jclepro.2023.139645.

[114]

N. Vieceli, C.A. Nogueira, C. Guimaraes, M.F.C. Pereira, F.O. Durao, F. Margarido,Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite, Waste Manag., 71 (2018) 350-361, doi: 10.1016/j. wasman.2017.09.032.

[115]

S. Natarajan, A.B. Boricha, H.C. Bajaj,Recovery of value-added products from cathode and anode material of spent lithium-ion batteries, Waste Manag., 77 (2018) 455-465, doi: 10.1016/j. wasman.2018.04.032.

[116]

Y. Yang, X. Zheng, H. Cao, C. Zhao, X. Lin, P. Ning, Y. Zhang, W. Jin, Z. Sun, A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation, ACS Sustain. Chem. Eng., 5 (2017) 9972-9980, doi: 10.1021/acssuschemeng.7b01914.

[117]

P. Zhang, T. Yokoyama, O. Itabashi, T.M. Suzuki, K. Inoue, Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47 (1998) 259-271, 10.1016/S0304-386X(97)00050-9.

[118]

F. Wang, R. Sun, J. Xu, Z. Chen, M. Kang, Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction, RSC Adv., 6 (2016) 85303-85311, doi: 10.1039/C6RA16801A.

[119]

K. Wang, G. Zhang, M. Luo, M. Zeng,Separation of Co and Mn from acetic acid leaching solution of spent lithium-ion battery by Cyanex272, J. Environ. Chem. Eng., 10 (2022), Article 108250, 10.1016/j. jece.2022.108250.

[120]

Y. Pranolo, W. Zhang, C. Cheng, Recovery of metals from spent lithium-ion battery leach solutions with a mixed solvent extractant system, Hydrometallurgy, 102 (2010) 37-42, doi: 10.1016/j. hydromet.2010.01.007.

[121]

Y. Ding, N.T.H. Nhung, J. An, H. Chen, L. Liao, C. He, X. Wang, T. Fujita, Manganese-titanium mixed ion sieves for the selective adsorption of lithium ions from an artificial salt lake brine, Materials, 16 (2023), p. 4190, 10.3390/ma16114190.

[122]

M.L. Strauss, L. Diaz, J. McNally, J. Klaehn, T.E. Lister,Separation of cobalt, nickel, and manganese in leach solutions of waste lithium-ion batteries using Dowex M4195 ion exchange resin, Hydrometallurgy, 206 (2021), Article 105757, 10.1016/j. hydromet.2021.105757.

[123]

J. Myoung, Y. Jung, J. Lee, Y. Tak, Cobalt oxide preparation from waste LiCoO2 by electrochemical-hydrothermal method, J. Power Sources, 112 (2002) 639-642, 10.1016/S0378-7753(02)00459-7.

[124]

J. Ordoñez, E.J. Gago, A. Girard,Processes and technologies for the recycling and recovery of spent lithium-ion batteries, Renew. Sustain. Energy Rev., 60 (2016) 195-205, doi: 10.1016/j. rser.2015.12.363.

[125]

S.O. Kilian, B. Wankmiller, A.M. Sybrecht, J. Twellmann, M.R. Hansen, H. Wiggers, Active buffer matrix in nanoparticle-based silicon-rich silicon nitride anodes enables high stability and fast charging of lithium-ion batteries, Adv. Mater. Interfaces, 9 (2022), Article 2201389, 10.1002/admi.202201389.

[126]

L. Gaines, Lithium-ion battery recycling processes: Research towards a sustainable course, Sustain. Mater. Technol., 17 (2018), p. e00068, 10.1016/j. susmat.2018.e00068.

[127]

M. Ahuis, S. Doose, D. Vogt, P. Michalowski, S. Zellmer, A. Kwade, Recycling of solid-state batteries, Nat. Energy, 9 (2024) 373-385, doi: 10.1038/s41560-024-01463-4.

[128]

L.M. Riegger, R. Schlem, J. Sann, W.G. Zeier, J. Janek, Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries, Angew. Chem. Int. Ed., 60 (2021) 6718-6723, doi: 10.1002/anie.202015238.

AI Summary AI Mindmap
PDF (5007KB)

605

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/