Advances in lithium-ion battery recycling: Strategies, pathways, and technologies
Ziwei Tong , Mingyue Wang , Zhongchao Bai , Huijun Li , Nana Wang
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 30 -47.
Advances in lithium-ion battery recycling: Strategies, pathways, and technologies
The use of lithium-ion batteries in portable electronic devices and electric vehicles has become well-established, and battery demand is rapidly increasing annually. While technological innovations in electrode materials and battery performance have been pursued, the environmental threats and resource wastage posed by the resulting surge in used batteries have been overlooked. Spent batteries are technically inoperable but contain excess metal inside the structure, making recycling essential for environmental protection and recovery of scarce resources. The battery recycling industry has gradually emerged under the influence of government implementation and ecological protection trends. However, the annual recycling volume is still insufficient compared to the output volume of used batteries. Therefore, more recycling plants and advanced technologies are imperative to improve recycling efficiency. This article summarizes pretreatment, pyrometallurgical, and hydrometallurgical processes and technologies in three major parts, analyzes their applicability and environmental friendliness using industrial examples, highlights their technical shortcomings and problems, and emphasizes the bright future of battery recycling.
Spent lithium-ion batteries / Recycling process / Pyrometallurgy / Hydrometallurgy / Metal recovery
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
Bebat,Sorting batteries? This is how we do it. 2024 (accessed 2024). https://www.bebat.be/en/blog/how-sorting-batteries |
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
Fraunhofer, New technologies for the disassembly of electric vehicle batteries and motors. 2023 (accessed 22 May 2023). https://www.ipa.fraunhofer.de/en/press-media/press_releases/new-technologies-for-the-disassembly-of-electric-vehicle-batteries-and-motors.html |
| [30] |
Itoinsider, Robotic battery disassembly: A key to the UK's net zero future. 2023 (accessed 19 May 2023). https://www.iotinsider.com/iot-insights/robotic-battery-disassembly-a-key-to-the-uks-net-zero-future/ |
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
/
| 〈 |
|
〉 |