Introducing Ce ions and oxygen vacancies into VO2 nanostructures with high specific surface area for efficient aqueous Zn-ion storage

Mingying Bao , Zhengchunyu Zhang , Xuguang An , Baojuan Xi , Shenglin Xiong

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 56 -63.

PDF (3643KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 56 -63. DOI: 10.1016/j.chphma.2024.05.004
Research article
research-article

Introducing Ce ions and oxygen vacancies into VO2 nanostructures with high specific surface area for efficient aqueous Zn-ion storage

Author information +
History +
PDF (3643KB)

Abstract

Positive electrodes play a decisive role in exploring the Zn2+ storage mechanism and improving the electrochemical performance of aqueous Zn-ion batteries (AZIBs). Feasible design and preparation of cathode materials have been crucial for AZIBs in recent years. Herein, taking the advantage of the tunnel structure of VO2, which can withstand volume change during charging/discharging, VO2 doped with Ce ions is synthesized by a simple one-step hydrothermal method and oxygen vacancies are synchronously generated during synthesis. It delivers a capacity of 158.5 mAh g−1 at the current density of 5 A g−1 after 1000 cycles and exhibits an excellent energy density of 312.8 Wh kg−1 at the power density of 142 W kg−1. The structural modification and prospect of enhancing its conductivity by doping with rare-earth metals and introducing oxygen vacancies may aid in improving the stability of AZIBs in the future.

Keywords

Cathode / Ce ions / Oxygen vacancies / Ce-VO2 / Aqueous Zn-ion batteries

Cite this article

Download citation ▾
Mingying Bao, Zhengchunyu Zhang, Xuguang An, Baojuan Xi, Shenglin Xiong. Introducing Ce ions and oxygen vacancies into VO2 nanostructures with high specific surface area for efficient aqueous Zn-ion storage. ChemPhysMater, 2025, 4(1): 56-63 DOI:10.1016/j.chphma.2024.05.004

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

Shenglin Xiong is a guest editor for special issue: Energy Material Chemistry, and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

CRediT authorship contribution statement

Mingying Bao: Writing - original draft. Zhengchunyu Zhang: Writing - review & editing. Xuguang An: Writing - review & editing. Baojuan Xi: Writing - review & editing. Shenglin Xiong: Writing - review & editing, Formal analysis, Conceptualization.

Acknowledgements

This work was supported by the National Natural Science Founda-tion of China (U21A2077), Natural Science Foundation of Shandong Province (ZR2021ZD05), and Taishan Scholars Program of Shandong Province (ts20190908).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.chphma.2024.05.004.

References

[1]

Y. Wu, K. Zhang, S. Chen, Y. Liu, Y. Tao, X. Zhang, Y. Ding, S. Dai, Proton inserted manganese dioxides as a reversible cathode for aqueous Zn-ion batteries, ACS Appl. Energy Mater., 3 (2020) 319-327.

[2]

P. He, Q. Chen, M. Yan, X. Xu, L. Zhou, L. Mai, C.W. Nan, Building better zinc-ion batteries: A materials perspective, EnergyChem, 1 (2019), Article 100022.

[3]

A. Tang, C. Wan, X. Meng, X. Li, X. Hu, M. Huang, X. Ju, Oxygen vacancies confined in porous Co3V2O8 sheets for durable and high-energy aqueous sodium-ion capacitors, Nano Res., 15 (2022) 5123-5133.

[4]

H. Liu, J.G. Wang, W. Hua, Z. You, Z. Hou, J. Yang, C. Wei, F. Kang, Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance, Energy Storage Mater., 35 (2021) 731-738.

[5]

Y. Niu, Z. Yu, Y. Zhou, J. Tang, M. Li, Z. Zhuang, Y. Yang, X. Huang, B. Tian, Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy, Nano Res., 15 (2022) 7180-7189.

[6]

N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao, F. Cheng, Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life, ACS Energy Lett., 3 (2018) 1366-1372.

[7]

Y. Liu, J. Wang, J. Sun, F. Xiong, Q. Liu, Y. An, L. Shen, J. Wang, Q. An, L. Mai, A glutamate anion boosted zinc anode for deep cycling aqueous zinc ion batteries, J. Mater. Chem. A, 10 (2022) 25029-25038.

[8]

H. Lu, X. Zhang, M. Luo, K. Cao, Y. Lu, B.B. Xu, H. Pan, K. Tao, Y. Jiang, Amino acid-induced interface charge engineering enables highly reversible Zn anode, Adv. Funct. Mater., 31 (2021), Article 2103514.

[9]

W. Gou, H. Chen, Z. Xu, Y. Sun, X. Han, M. Liu, Y. Zhang, High specific capacity and mechanism of a metal-organic framework-based cathode for aqueous zinc-ion batteries, Energy Adv., 1 (2022) 1065-1070.

[10]

B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12 (2019) 3288-3304.

[11]

Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou, S. Liang, Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode, Energy Environ. Sci., 11 (2018) 3157-3162.

[12]

M. Liao, J. Wang, L. Ye, H. Sun, Y. Wen, C. Wang, X. Sun, B. Wang, H. Peng, A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode, Angew. Chem. Int. Ed., 59 (2020) 2273-2278.

[13]

Z. Zhang, B. Xi, X. Ma, W. Chen, J. Feng, S. Xiong, Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries, SusMat, 2 (2022) 114-141.

[14]

Y. Liu, S. Guo, W. Ling, M. Cui, H. Lei, J. Wang, W. Li, Q. Liu, L. Cheng, Y. Huang, In-situ oriented oxygen-defect-rich MnNO via nitridation and electrochemical oxidation based on industrial-scale Mn2O3 to achieve high-performance aqueous zinc ion battery, J. Energy Chem., 76 (2023) 11-18.

[15]

Y. Tong, Y. Zang, S. Su, Y. Zhang, J. Fang, Y. Yang, X. Li, X. Wu, F. Chen, J. Hou, M. Luo, Methylene blue intercalated vanadium oxide with synergistic energy storage mechanism for highly efficient aqueous zinc ion batteries, J. Energy Chem., 77 (2023) 269-279.

[16]

N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., 49 (2020) 4203-4219.

[17]

Z. Zhang, P. Wang, C. Wei, J. Feng, S. Xiong, B. Xi, Synchronous regulation of d-band centers in Zn substrates and weakening Pauli repulsion of Zn ions using the ascorbic acid additive for reversible zinc anodes, Angew. Chem. Int. Ed., 63 (2024), Article e202402069.

[18]

X. Wang, K. Feng, B. Sang, G. Li, Z. Zhang, G. Zhou, B. Xi, X. An, S. Xiong, Highly reversible zinc metal anodes enabled by solvation structure and interface chemistry modulation, Adv. Energy Mater., 13 (2023), Article 2301670.

[19]

C. Guo, S. Yi, R. Si, B. Xi, X. An, J. Liu, J. Li, S. Xiong, Advances on defect engineering of vanadium-based compounds for high-energy aqueous zinc-ion batteries, Adv. Energy Mater., 12 (2022), Article 2202039.

[20]

H. Lu, Z. Zhang, X. An, J. Feng, S. Xiong, In situ electrochemically transforming VN/V2O3 heterostructure to highly reversible V2NO for excellent zinc ion storage, Small Struct., 4 (2023), Article 2300191.

[21]

P. Yadav, N. Kumari, A.K. Rai, A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries, J. Power Sources, 555 (2023), Article 232385.

[22]

Y.Y. Liu, T.T. Lv, H. Wang, X.T. Guo, C.S. Liu, H. Pang, Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-ion batteries, Chem. Eng. J., 417 (2021), Article 128408.

[23]

Y. Liu, X. Wu, Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries, J. Energy Chem., 56 (2021) 223-237.

[24]

Y. Zhou, F. Chen, H. Arandiyan, P. Guan, Y. Liu, Y. Wang, C. Zhao, D. Wang, D. Chu, Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges, J. Energy Chem., 57 (2021) 516-542.

[25]

X. Fan, X. Wen, Y. Tang, W. Zhou, K. Xiang, H. Chen, β-VO2/carbon nanotubes core-shelled microspheres and their applications for advanced cathode in aqueous zinc ion batteries, Electrochim. Acta, 400 (2021), Article 139425.

[26]

M. Yang, Y. Wang, Z. Sun, H. Mi, S. Sun, D. Ma, P. Zhang, Anti-aggregation growth and hierarchical porous carbon encapsulation enables the C@VO2 cathode with superior storage capability for aqueous zinc-ion batteries, J. Energy Chem., 67 (2022) 645-654.

[27]

X. Dai, F. Wan, L. Zhang, H. Cao, Z. Niu, Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance, Energy Storage Mater., 17 (2019) 143-150.

[28]

F. Gao, H. Gao, K. Zhao, X. Cao, J. Ding, S. Wang, Tungsten-oxygen bond pre-introduced VO2(B) nanoribbons enable fast and stable zinc ion storage ability, J. Colloid Interface Sci., 629 (2023) 928-936.

[29]

M. Li, J. Mou, L. Zhong, T. Liu, Y. Xu, W. Pan, J. Huang, G. Wang, M. Liu, Porous ultrathin W-doped VO2 nanosheets enable boosted Zn2+ (de)intercalation kinetics in VO2 for high-performance aqueous Zn-ion batteries, ACS Sustain. Chem. Eng., 9 (2021) 14193-14201.

[30]

M. Bao, Z. Zhang, X. An, J. Liu, J. Feng, B. Xi, S. Xiong, Introducing Ce ions and oxygen defects into V2O5 nanoribbons for efficient aqueous zinc ion storage, Nano Res., 16 (2023) 2445-2453.

[31]

D. Zhang, J. Cao, Y. Yue, T. Pakornchote, T. Bovornratanaraks, J. Han, X. Zhang, J. Qin, Y. Huang, Two birds with one stone: Boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries, ACS Appl. Mater. Interfaces, 13 (2021) 38416-38424.

[32]

L. Xie, W. Xiao, X. Shi, J. Hong, J. Cai, K. Zhang, L. Shao, Z. Sun, VO2·0.26H2O nanobelts@reduced graphene oxides as cathode materials for high-performance aqueous zinc ion batteries, Chem. Commun., 58 (2022) 13807-13810.

[33]

H. He, D. Huang, Q. Gan, J. Hao, S. Liu, Z. Wu, W.K. Pang, B. Johannessen, Y. Tang, J.L. Luo, H. Wang, Z. Guo, Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage, ACS Nano, 13 (2019) 11843-11852.

[34]

Y. Zeng, Z. Lai, Y. Han, H. Zhang, S. Xie, X. Lu, Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries, Adv. Mater., 30 (2018), Article 1802396.

[35]

W. Xu, C. Liu, Q. Wu, W. Xie, W.Y. Kim, S.Y. Lee, J. Gwon,A stretchable solid-state zinc ion battery based on a cellulose nanofiber-polyacrylamide hydrogel electrolyte and a Mg0.23V2O5·1.0H2O cathode, J. Mater. Chem. A, 8 (2020) 18327-18337.

[36]

Q. Li, X. Ye, Y. Jiang, E.H. Ang, W. Liu, Y. Feng, X. Rui, Y. Yu, Superior potassium and zinc storage in K-doped VO2(B) spheres, Mater. Chem. Front., 5 (2021) 3132-3138.

[37]

H. Chen, T. Liu, J. Mou, W. Zhang, Z. Jiang, J. Liu, J. Huang, M. Liu, Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors, Nano Energy, 63 (2019), Article 103836.

[38]

L.F. Chen, Z.H. Huang, H.W. Liang, W.T. Yao, Z.Y. Yu, S.H. Yu, Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose, Energy Environ. Sci., 6 (2013) 3331-3338.

[39]

P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode, Adv. Energy Mater., 7 (2017), Article 1601920.

[40]

L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system, Adv. Energy Mater., 5 (2015), Article 1400930.

[41]

C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode, Adv. Mater., 30 (2018), Article 1705580.

[42]

N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery, J. Am. Chem. Soc., 138 (2016) 12894-12901.

[43]

G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3, Nano Energy, 25 (2016) 211-217.

[44]

B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. Liang, Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries, Nano Energy, 51 (2018) 579-587.

[45]

K. Zhu, T. Wu, K. Huang, A high-capacity bilayer cathode for aqueous Zn-ion batteries, ACS Nano, 13 (2019) 14447-14458.

[46]

D. Zhao, X. Wang, W. Zhang, Y. Zhang, Y. Lei, X. Huang, Q. Zhu, J. Liu, Unlocking the capacity of vanadium oxide by atomically thin graphene-analogous V2O5·nH2O in aqueous zinc-ion batteries, Adv. Funct. Mater. 33 (2023), Article 2211412.

[47]

Z. Zhang, B. Xi, X. Wang, X. Ma, W. Chen, J. Feng, S. Xiong, Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage, Adv. Funct. Mater., 31 (2021), Article 2103070.

[48]

Z. Li, S. Ganapathy, Y. Xu, Z. Zhou, M. Sarilar, M. Wagemaker, Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte, Adv. Energy Mater., 9 (2019), Article 1900237.

[49]

L. Chen, Z. Yang, Y. Huang, Monoclinic VO2(D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries, Nanoscale, 11 (2019) 13032-13039.

[50]

N. Liu, X. Wu, L. Fan, S. Gong, Z. Guo, A. Chen, C. Zhao, Y. Mao, N. Zhang, K. Sun, Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance, Adv. Mater., 32 (2020), Article 1908420.

AI Summary AI Mindmap
PDF (3643KB)

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/