MXene-derived TiO2 nanosheets/rGO heterostructures for superior sodium-ion storage

Baosong Li , Dezhuang Ji , Abdallah Kamal Hamouda , Shaohong Luo

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 48 -55.

PDF (3529KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 48 -55. DOI: 10.1016/j.chphma.2024.05.001
Research article
research-article

MXene-derived TiO2 nanosheets/rGO heterostructures for superior sodium-ion storage

Author information +
History +
PDF (3529KB)

Abstract

Transition metal oxides hold promise as electrode materials for energy-storage devices such as batteries and supercapacitors. However, achieving ideal electrode materials with high capacity, long-term cycling stability, and superb rate capability remains a challenge. In this study, we present a self-assembled heterogeneous structure consisting of TiO2 nanosheets derived from Ti3C2Tx MXene and reduced graphene oxide. This structure facilitates the formation of heterogeneous structures while establishing a conductive network. The restacking of porous TiO2 nanosheets and reduced graphene oxide within the heterostructure results in high porosity and excellent conductivity. Due to enhanced electron and Na+ transfer, as well as improved structural stability during the Na+ insertion/extraction process, this heterogeneous structure exhibited exceptional Na+ storage performance. Specifically, it exhibits a long-term cycling stability (217 mAh g−1 at 10 C, 5000 cycles) and an ultrahigh rate capability (135 mAh g-1, 40 C). Analysis of electrode reaction kinetics suggests that Na+ storage in the heterostructure is predominantly governed by a surface-controlled process. Our results provide a promising strategy for utilizing self-assembled heterostructures in advanced energy storage applications.

Keywords

Ti3C2Tx MXene / Titanium dioxide / Self-assembly / Heterostructure / Sodium-ion batteries

Cite this article

Download citation ▾
Baosong Li, Dezhuang Ji, Abdallah Kamal Hamouda, Shaohong Luo. MXene-derived TiO2 nanosheets/rGO heterostructures for superior sodium-ion storage. ChemPhysMater, 2025, 4(1): 48-55 DOI:10.1016/j.chphma.2024.05.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Baosong Li: Writing - review & editing, Writing - original draft, Visualization, Supervision, Software, Resources, Methodology, Investigation, Conceptualization. Dezhuang Ji: Validation, Resources, Investigation. Abdallah Kamal Hamouda: Validation, Resources. Shaohong Luo: Visualization, Investigation.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Research & Innovation Center for Graphene and 2D Materials (RIC-2D) and the use of the Khalifa University Core Nanocharacterization Facilities (CNCF).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.chphma.2024.05.001.

References

[1]

L. Chen, M. Fiore, J.E. Wang, R. Ruffo, D.K. Kim, G. Longoni, Readiness level of sodium-ion battery technology: A materials review, Adv. Sustainable Syst., 2 (2018), Article 1700153, 10.1002/adsu.201700153.

[2]

J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: Present and future, Chem. Soc. Rev., 46 (2017) 3529-3614, doi: 10.1039/c6cs00776g.

[3]

F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang, Y. Yu, Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage, Adv. Funct. Mater., 28 (2018), Article 1800394, 10.1002/adfm.201800394.

[4]

B. Wang, F. Zhao, G. Du, S. Porter, Y. Liu, P. Zhang, Z. Cheng, H.K. Liu, Z. Huang, Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries, ACS Appl. Mater. Inter., 8 (2016) 16009-16015, doi: 10.1021/acsami.6b03270.

[5]

G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao, T. Lin, Y. Chen, C. Wang, A. Pan, S. Liang, Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode, Adv. Energy Mater., 8 (2018), Article 1703155, 10.1002/aenm.201703155.

[6]

Y. Zhou, Y. Liu, M. Zhang, Q. Han, Y. Wang, X. Sun, X. Zhang, C. Dong, J. Sun, Z. Tang, F. Jiang,Rationally designed hierarchical N, P co-doped carbon connected 1T/2H-MoS2 heterostructures with cooperative effect as ultrafast and durable anode materials for efficient sodium storage, Chem. Eng. J., 433 (2022), Article 133778, 10.1016/j. cej.2021.133778.

[7]

F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang, Y. Qian, MoSe2-covered N,P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries, Adv. Funct. Mater., 27 (2017), Article 1700522, 10.1002/adfm.201700522.

[8]

P. Ge, S. Li, L. Xu, K. Zou, X. Gao, X. Cao, G. Zou, H. Hou, X. Ji, Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage, Adv. Energy Mater., 9 (2019), Article 1803035, 10.1002/aenm.201803035.

[9]

F. Song, J. Hu, G. Li, J. Wang, S. Chen, X. Xie, Z. Wu, N. Zhang, Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage, Nano-Micro Lett, 14 (2021), p. 37, 10.1007/s40820-021-00781-6.

[10]

X. Wang, K. Chen, G. Wang, X. Liu, H. Wang, Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries, ACS Nano, 11 (2017) 11602-11616, doi: 10.1021/acsnano.7b06625.

[11]

Y. Jiang, R. Han, J. Dong, R. Yu, S. Tan, F. Xiong, Q. Wei, J. Wang, L. Cui, H. Tian, Y. Yang, Q. An, Uncovering the origin of surface-redox pseudocapacitance of molybdenum phosphides enables high-performance flexible sodium-ion capacitors, Chem. Eng. J., 475 (2023), Article 145962, 10.1016/j. cej.2023.145962.

[12]

Z. Huang, H. Hou, Y. Zhang, C. Wang, X. Qiu, X. Ji, Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode, Adv. Mater., 29 (2017), p. 1702372, 10.1002/adma.201702372.

[13]

H. Gao, T. Zhou, Y. Zheng, Y. Liu, J. Chen, H. Liu, Z. Guo, Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries, Adv. Energy Mater., 6 (2016), Article 1601037, 10.1002/aenm.201601037.

[14]

D. Luo, J. Xu, Q. Guo, L. Fang, X. Zhu, Q. Xia, H. Xia, Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries, Adv. Funct. Mater., 28 (2018), Article 1805371, 10.1002/adfm.201805371.

[15]

Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou, J.M. Zhang, Z. Huang, M. Wei, Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance, Adv. Mater., 30 (2018), Article e1802035, 10.1002/adma.201802035.

[16]

S. Feng, K. Li, P. Hu, C. Cai, J. Liu, X. Li, L. Zhou, L. Mai, B.L. Su, Y. Liu, Solvent-free synthesis of hollow carbon nanostructures for efficient sodium storage, ACS Nano, 17 (2023) 23152-23159, doi: 10.1021/acsnano.3c09328.

[17]

C. Yang, S. Xin, L. Mai, Y. You, Materials design for high-safety sodium-ion battery, Adv. Energy Mater., 11 (2020), Article 2000974, 10.1002/aenm.202000974.

[18]

H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries, Adv. Energy Mater., 6 (2016), Article 1600943, 10.1002/aenm.201600943.

[19]

S. Lou, Y. Zhao, J. Wang, G. Yin, C. Du, X. Sun, Ti-based oxide anode materials for advanced electrochemical energy storage: Lithium/sodium ion batteries and hybrid pseudocapacitors, Small, 15 (2019), Article e1904740, 10.1002/smll.201904740.

[20]

L. Chen, K. Guo, S.L. Zeng, L. Xu, C.Y. Xing, S. Zhang, B.J. Li, Cross-stacking aligned non-woven fabrics with automatic self-healing properties for electromagnetic interference shielding, Carbon, 162 (2020) 445-454, doi: 10.1016/j. carbon.2020.02.034.

[21]

Y. Mei, Y. Huang, X. Hu, Nanostructured Ti-based anode materials for Na-ion batteries, J. Mater. Chem. A, 4 (2016) 12001-12013, doi: 10.1039/C6TA04611H.

[22]

H. Xu, Q. Chen, M. Ren, W. Liu, M. Li, G. Li, Titanium glycolate@polythiophene derivative: waxberry-like TiO2@carbon composites with high-pseudo-capacitive performance for sodium storage, J. Electrochem. Soc., 166 (2019) A1096-A1102, 10.1149/2.0651906jes.

[23]

H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries, J. Phys. Chem. Lett., 2 (2011) 2560-2565, doi: 10.1021/jz2012066.

[24]

K. Lan, Y. Liu, W. Zhang, Y. Liu, A. Elzatahry, R. Wang, Y. Xia, D. Al-Dhayan, N. Zheng, D. Zhao, Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly, J. Am. Chem. Soc., 140 (2018) 4135-4143, doi: 10.1021/jacs.8b00909.

[25]

B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng, Y. Qian, S. Xiong, Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage, Adv. Mater., 30 (2018), Article 1705788, 10.1002/adma.201705788.

[26]

Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H.B. Wu, Y. Lu, Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors, ACS Nano, 11 (2017) 2952-2960, doi: 10.1021/acsnano.6b08332.

[27]

B. Li, S. Anwer, X. Huang, S. Luo, J. Fu, K. Liao,Nitrogen-doped carbon encapsulated in mesoporous TiO2 nanotubes for fast capacitive sodium storage, J. Energy Chem., 55 (2021) 202-210, doi: 10.1016/j. jechem.2020.06.074.

[28]

F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes), Science, 353 (2016) 1137-1140, doi: 10.1126/science.aag2421.

[29]

S. Luo, T. Alkhidir, S. Mohamed, S. Anwer, B. Li, J. Fu, K. Liao, V. Chan, Investigation of interfacial interaction of graphene oxide and Ti3C2Tx (MXene) via atomic force microscopy, Appl. Surf. Sci., 609 (2023), Article 155303, 10.1016/j. apsusc.2022.155303.

[30]

C. Bao, J. Wang, B. Wang, J. Sun, L. He, Z. Pan, Y. Jiang, D. Wang, X. Liu, S.X. Dou, J. Wang, 3D sodiophilic Ti3C2 MXene@g-C3N4 hetero-interphase raises the stability of sodium metal anodes, ACS Nano, 16 (2022) 17197-17209, doi: 10.1021/acsnano.2c07771.

[31]

Q. Han, C. Wu, H. Jiao, R. Xu, Y. Wang, J. Xie, Q. Guo, J. Tang, Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis, Adv. Mater., 33 (2021), Article 2008180, 10.1002/adma.202008180.

[32]

H. Zhang, L. Yang, P. Zhang, C. Lu, D. Sha, B. Yan, W. He, M. Zhou, W. Zhang, L. Pan, Z. Sun, MXene-derived TinO2n-1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: Enhanced polysulfide mediation via defect engineering, Adv. Mater., 33 (2021), Article 2008447, 10.1002/adma.202008447.

[33]

R. Li, X. Ma, J. Li, J. Cao, H. Gao, T. Li, X. Zhang, L. Wang, Q. Zhang, G. Wang, C. Hou, Y. Li, T. Palacios, Y. Lin, H. Wang, X. Ling, Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures, Nat. Commun., 12 (2021), p. 1587, 10.1038/s41467-021-21852-7.

[34]

T. Wu, P.R.C. Kent, Y. Gogotsi, D.E. Jiang, How water attacks MXene, Chem. Mater., 34 (2022) 4975-4982, doi: 10.1021/acs.chemmater.2c00224.

[35]

S. Chertopalov, V.N. Mochalin, Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films, ACS Nano, 12 (2018) 6109-6116, doi: 10.1021/acsnano.8b02379.

[36]

S. Ahmed, B. Li, S. Luo, K. Liao, Heterogeneous Ti3C2Tx MXene-MWCNT@MoS2 film for enhanced long-term electromagnetic interference shielding in the moisture environment, ACS Appl. Mater. Inter., 15 (2023) 49458-49467, doi: 10.1021/acsami.3c08279.

[37]

B. Li, S. Luo, S. Anwer, V. Chan, K. Liao, Heterogeneous films assembled from Ti3C2Tx MXene and porous double-layered carbon nanosheets for high-performance electromagnetic interference shielding, Appl. Surf. Sci., 599 (2022), Article 153944, 10.1016/j. apsusc.2022.153944.

[38]

R. Luo, Y. Ma, W. Qu, J. Qian, L. Li, F. Wu, R. Chen, High pseudocapacitance boosts ultrafast, high-capacity sodium storage of 3D graphene foam-encapsulated TiO2 architecture, ACS Appl. Mater. Inter., 12 (2020) 23939-23950, doi: 10.1021/acsami.0c04481.

[39]

Y. Lu, N. Zhang, S. Jiang, Y. Zhang, M. Zhou, Z. Tao, L.A. Archer, J. Chen, High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide-graphene foam architecture, Nano Lett., 17 (2017) 3668-3674, doi: 10.1021/acs.nanolett.7b00889.

[40]

Z.L. Xu, K. Lim, K.Y. Park, G. Yoon, W.M. Seong, K. Kang, Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries, Adv. Funct. Mater., 28 (2018), Article 1802099, 10.1002/adfm.201802099.

[41]

B. Li, B. Xi, F. Wu, H. Mao, J. Liu, J. Feng, S. Xiong, One-step in situ formation of N-doped carbon nanosheet 3D porous networks/TiO2 hybrids with ultrafast sodium storage, Adv. Energy Mater., 9 (2019), Article 1803070, 10.1002/aenm.201803070.

[42]

V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater., 12 (2013) 518-522, doi: 10.1038/nmat3601.

[43]

C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling, Nat. Commun., 6 (2015), p. 6929, 10.1038/ncomms7929.

AI Summary AI Mindmap
PDF (3529KB)

270

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/