Fullerene nanosheets for surface-enhanced Raman spectroscopy

Linchangqing Yang , Yahui Li , Wei Liu , Junhao Zhang , Qinghong Kong , Guangcheng Xi

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 86 -90.

PDF (2542KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 86 -90. DOI: 10.1016/j.chphma.2024.04.001
Research article
research-article

Fullerene nanosheets for surface-enhanced Raman spectroscopy

Author information +
History +
PDF (2542KB)

Abstract

Most surface-enhanced Raman scattering (SERS) substrates are based on noble metals or transition metal semiconductors. Developing nonmetallic SERS substrates is of great significance for expanding the application scope of SERS substrate materials. In this study, ultrathin C60 nanosheets with two-dimensional structures were synthesized using CVD and used as SERS substrates. Owing to the combined effects of favorable factors such as the expanded specific surface area and matched interfacial charge transport paths, the substrate has a minimum detection limit of 10−11 for rhodamine 6G and a Raman enhancement factor of 107. In addition, the C60 nanosheets exhibited good stability and uniformity as SERS substrates.

Keywords

Fullerenes / Nanosheets / Raman sensing / Interfacial charge transfer / Pollutant detection

Cite this article

Download citation ▾
Linchangqing Yang, Yahui Li, Wei Liu, Junhao Zhang, Qinghong Kong, Guangcheng Xi. Fullerene nanosheets for surface-enhanced Raman spectroscopy. ChemPhysMater, 2025, 4(1): 86-90 DOI:10.1016/j.chphma.2024.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Linchangqing Yang: Writing - review & editing, Writing - original draft, Methodology, Investigation. Yahui Li: Investigation. Wei Liu: Investigation. Junhao Zhang: Methodology. Qinghong Kong: Writing - original draft, Methodology, Investigation. Guangcheng Xi: Conceptualization, Formal analysis.

Acknowledgements

This study was financially supported by the Science Foundation of the Chinese Academy of Inspection and Quarantine (2022JK14) and the National Natural Science Foundation of China (22374139).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.chphma.2024.04.001.

References

[1]

S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu, R. Panneerselvam, Z.Q. Tian, Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials, Nat. Rev. Mater., 1 (2016), p. 16021.

[2]

R. Chikkaraddy, B. De Nijs, F. Benz, S.J. Barrow, O.A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J.J. Baumberg, Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature, 535 (2016) 127-130.

[3]

S. Schlücker, Surface-enhanced raman spectroscopy: Concepts and chemical applications, Angew. Chem. Int. Ed., 53 (2014) 4756-4795.

[4]

Y. Wang, B. Yan, L. Chen, SERS tags: Novel optical nanoprobes for bioanalysis, Chem. Rev., 113 (2013) 1391-1428.

[5]

D. Cialla-May, X.-S. Zheng, K. Weber, J. Popp, Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics, Chem. Soc. Rev., 46 (2017) 3945-3961.

[6]

Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, J. He, L. Zhou, C. Zhang, Y. Deng, P. Wang, Z. Zhou, S. Nie, H. Wei, Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues, ACS Nano, 11 (2017) 5558-5566.

[7]

X. Fu, Z. Cheng, J. Yu, P. Choo, L. Chen, J. Choo, A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA, Biosens. Bioelectron., 78 (2016) 530-537.

[8]

L.J. Xu, Z.C. Lei, J. Li, C. Zong, C.J. Yang, B. Ren, Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity, J. Am. Chem. Soc., 137 (2015) 5149-5154.

[9]

X. Qiao, B. Su, C. Liu, Q. Song, D. Luo, G. Mo, T. Wang, Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure, Adv. Mater., 30 (2018), Article 1702275.

[10]

M.J. Banholzer, J.E. Millstone, L. Qin, C.A. Mirkin, Rationally designed nanostructures for surface-enhanced raman spectroscopy, Chem. Soc. Rev., 37 (2008), p. 885.

[11]

H. Ko, S. Singamaneni, V.V. Tsukruk, Nanostructured surfaces and assemblies as SERS media, Small, 4 (2008) 1576-1599.

[12]

D.K. Lim, K.S. Jeon, H.M. Kim, J.M. Nam, Y.D. Suh, Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection, Nature Mater, 9 (2010) 60-67.

[13]

C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates, Nano Lett., 5 (2005) 1569-1574.

[14]

Y. Lu, G.L. Liu, L.P. Lee, High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate, Nano Lett., 5 (2005) 5-9.

[15]

K.L. Wustholz, A.-I. Henry, J.M. McMahon, R.G. Freeman, N. Valley, M.E. Piotti, M.J. Natan, G.C. Schatz, R.P. Van Duyne, Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy, J. Am. Chem. Soc., 132 (2010) 10903-10910.

[16]

Q. Zhang, X. Li, Q. Ma, Q. Zhang, H. Bai, W. Yi, J. Liu, J. Han, G. Xi, A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy, Nat. Commun., 8 (2017), p. 14903.

[17]

S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng, Z. Zhao, Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies, Nat. Commun., 6 (2015), p. 7800.

[18]

X. Wang, W. Shi, S. Wang, H. Zhao, J. Lin, Z. Yang, M. Chen, L. Guo, Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity, J. Am. Chem. Soc., 141 (2019) 5856-5862.

[19]

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, Z. Zhao, Semiconductor SERS enhancement enabled by oxygen incorporation, Nat. Commun., 8 (2017), p. 1993.

[20]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, Z. Liu, Can graphene be used as a substrate for Raman enhancement?, Nano Lett., 10 (2010) 553-561.

[21]

H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163.

[22]

X.B. Wang, C.F. Ding, L.S. Wang, High resolution photoelectron spectroscopy of C60-, J. Chem. Phys., 110 (1999) 8217-8220.

[23]

D. Im, H. Moon, M. Shin, J. Kim, S. Yoo, Towards gigahertz operation: Ultrafast low turn-on organic diodes and rectifiers based on C60 and tungsten oxide, Adv. Mater., 23 (2011) 644-648.

[24]

J. Jeng, Y. Chiang, M. Lee, S. Peng, T. Guo, P. Chen, T. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 25 (2013) 3727-3732.

[25]

R. Pandey, A.A. Gunawan, K.A. Mkhoyan, R.J. Holmes, Efficient organic photovoltaic cells based on nanocrystalline mixtures of boron subphthalocyanine chloride and C60, Adv. Funct. Mater., 22 (2012) 617-624.

[26]

H. Li, B.C.K. Tee, J.J. Cha, Y. Cui, J.W. Chung, S.Y. Lee, Z. Bao, High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals, J. Am. Chem. Soc., 134 (2012) 2760-2765.

[27]

K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, H. Koinuma, High-mobility C60 field-effect transistors fabricated on molecular-wetting controlled substrates, Adv. Mater., 18 (2006) 1713-1716.

[28]

K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bäuerle, Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60, Adv. Mater., 18 (2006) 2872-2875.

[29]

W. Li, K.H. Hendriks, W.S.C. Roelofs, Y. Kim, M.M. Wienk, R.A.J. Janssen, Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films, Adv. Mater., 25 (2013) 3182-3186.

[30]

J.D. Zimmerman, V.V. Diev, K. Hanson, R.R. Lunt, E.K. Yu, M.E. Thompson, S.R. Forrest, Porphyrin-tape/C60 organic photodetectors with 6.5% external quantum efficiency in the near infrared, Adv. Mater., 22 (2010) 2780-2783.

[31]

M.R. Benzigar, S. Joseph, H. Ilbeygi, D. Park, S. Sarkar, G. Chandra, S. Umapathy, S. Srinivasan, S.N. Talapaneni, A. Vinu, Highly crystalline mesoporous C60 with ordered pores: A class of nanomaterials for energy applications, Angew. Chem. Int. Ed., 130 (2018) 578-582.

[32]

M. Feng, J. Lee, J. Zhao, Yates, H Petek, Nanoscale templating of close-packed C60 nanowires, J. Am. Chem. Soc., 129 (2007) 12394-12395.

[33]

X. Yu, J. Zhang, W. Choi, J.Y. Choi, J.M. Kim, L. Gan, Z. Liu, Cap formation engineering: From opened C60 to single-walled carbon nanotubes, Nano Lett., 10 (2010) 3343-3349.

[34]

H.S. Shin, S.M. Yoon, Q. Tang, B. Chon, T. Joo, H.C. Choi, Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process, Angew. Chem. Int. Ed., 47 (2008) 693-696.

[35]

X. Li, S. Sun, F. Wu, Y. Miao, C60 nanorods as a promising infrared nonlinear optical material for ultrafast photonics, Carbon, 178 (2021) 728-733.

[36]

M. Sathish, K. Miyazawa, Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface, J. Am. Chem. Soc., 129 (2007) 13816-13817.

[37]

Y.L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M.L. Chen, D.M. Sun, X.Q. Chen, H.M. Cheng, W. Ren, Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science, 369 (2020) 670-674.

[38]

Z. Cai, B. Liu, X. Zou, H.M. Cheng, Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures, Chem. Rev., 118 (2018) 6091-6133.

[39]

L. Hou, X. Cui, B. Guan, S. Wang, R. Li, Y. Liu, D. Zhu, J. Zheng, Synthesis of a monolayer fullerene network, Nature, 606 (2022) 507-510.

[40]

R.G. Shrestha, L.K. Shrestha, A.H. Khan, G.S. Kumar, S. Acharya, K. Ariga, Demonstration of ultrarapid interfacial formation of 1D fullerene nanorods with photovoltaic properties, ACS Appl. Mater. Inter., 6 (2014) 15597-15603.

[41]

E. Meirzadeh, A.E. Evans, M. Rezaee, M. Milich, C.J. Dionne, T.P. Darlington, S.T. Bao, A.K. Bartholomew, T. Handa, D.J. Rizzo, R.A. Wiscons, M. Reza, A. Zangiabadi, N. Fardian-melamed, A.C. Crowther, P.J. Schuck, D.N. Basov, X.Y. Zhu, A. Giri, P.E. Hopkins, P. Kim, M.L. Steigerwald, J.J. Yang, C. Nuckolls, X. Roy, A few-layer covalent network of fullerenes, Nature, 613 (2023) 71-76.

[42]

X. Wang, W. Shi, G. She, L. Mu, Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism, J. Am. Chem. Soc., 133 (2011) 16518-16523.

AI Summary AI Mindmap
PDF (2542KB)

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/