One-step solvothermal preparation of Fe-doped Ni0.85Se/NF: An efficient catalyst for the oxygen evolution reaction

Longqi Zhu , Runze Wang , Chen Wang , Shuhan Yang , Haizhen Liu , Bo Xing , Honghui Cheng , Kuikui Wang

ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 78 -85.

PDF (4383KB)
ChemPhysMater ›› 2025, Vol. 4 ›› Issue (1) : 78 -85. DOI: 10.1016/j.chphma.2024.03.002
Research article
research-article

One-step solvothermal preparation of Fe-doped Ni0.85Se/NF: An efficient catalyst for the oxygen evolution reaction

Author information +
History +
PDF (4383KB)

Abstract

Metal-cation doping is a fundamental strategy for enhancing catalyst performance. Fe-doped Ni0.85Se/NF (Fe-Ni0.85Se/NF) nanoparticles were prepared at 80 °C via Fe2+ etching method. The addition of Fe altered the coordination environment of the Ni species along with the catalyst's morphology, creating additional active sites. Notably, the synergistic interaction between the bimetallic components augmented the built-in activity and accelerated reaction kinetics. The Fe-Ni0.85Se/NF electrocatalysts demonstrated remarkable catalytic activity for the oxygen evolution reaction (OER), with an acceptable overpotential of 276 mV and a Tafel slope of 58.1 mV dec−1 at 100 mA cm−2. Moreover, they demonstrated exceptional durability. In situ Raman and X-ray photoelectron spectroscopy (XPS) analyses showed that the excellent OER performance stemmed from the reconstruction-induced hydroxyl oxide. This study offers a novel approach for streamlining the synthesis procedures and reducing the experimental costs for developing high-efficiency electrocatalysts.

Keywords

Doping / Selenylation / Hydrothermal reaction / Oxygen evolution reaction / Electrocatalysts

Cite this article

Download citation ▾
Longqi Zhu, Runze Wang, Chen Wang, Shuhan Yang, Haizhen Liu, Bo Xing, Honghui Cheng, Kuikui Wang. One-step solvothermal preparation of Fe-doped Ni0.85Se/NF: An efficient catalyst for the oxygen evolution reaction. ChemPhysMater, 2025, 4(1): 78-85 DOI:10.1016/j.chphma.2024.03.002

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Longqi Zhu: Writing - original draft, Conceptualization. Runze Wang: Investigation, Data curation. Chen Wang: Methodology, Formal analysis. Shuhan Yang: Validation, Formal analysis. Haizhen Liu: Validation, Funding acquisition. Bo Xing: Writing - original draft, Funding acquisition. Honghui Cheng: Data curation. Kuikui Wang: Writing - review & editing, Funding acquisition.

Acknowledgements

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (51801108), the Shandong Provincial Natural Science Foundation (ZR2023ME072), and the Key Research and Development Program of Shandong Province (2019GGX103048). Additionally, this project received support from the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), the Open Foundation of Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials (2022GXYSOF16), and the Open Fundation of the National Engineering Laboratory of Circular Economy at Sichuan University of Science and Engineering (XHJJ-2304).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.chphma.2024.03.002.

References

[1]

J. Pan, Y. Fu, G. Xiao, J. Niu, J. Cao, J. Wang, Y. Zheng, C. Li, Photocatalytic overall water splitting hydrogen evolution enhancement of ZnO nanoarrays/LaCrO3 film heterojunction via HER/OER synergism of CoP/FTO, J. Environ. Chem. Eng., 10 (2022), Article 108587, 10.1016/j. jece.2022.108587.

[2]

M. Usman, Z. Zeb, H. Ullah, H.S. Munzir, H. Muhammad, U. Latif, N.A.S. Syed, A. Usama, S. Muhammad, A review of metal-organic frameworks/graphitic carbon nitride composites for solar-driven green H2 production, CO2 reduction, and water purification, J. Environ. Chem. Eng., 10 (2022), Article 107548, 10.1016/j. jece.2022.107548.

[3]

J. Chang, Z. Hu, D. Wu, F. Xu, C. Chen, K. Jiang, Z. Gao, Prussian blue analog-derived nickel iron phosphide-reduced graphene oxide hybrid as an efficient catalyst for overall water electrolysis, J. Colloid Interf. Sci., 638 (2023) 801-812, doi: 10.1016/j. jcis.2023.02.037.

[4]

Z. Li, X. Wang, X. Wang, Y. Lin, A. Meng, L. Yang, Q. Li, Mn-Cd-S@amorphous-Ni3S2 hybrid catalyst with enhanced photocatalytic property for hydrogen production and electrocatalytic OER, Appl. Surf. Sci., 491 (2019) 799-806, doi: 10.1016/j. apsusc.2019.05.313.

[5]

L. Zhu, Y. Liao, Y. Jia, X. Zhang, R. Ma, K. Wang, Solid-solution hexagonal Ni0.5Co0.5Se nanoflakes toward the boosted oxygen evolution reaction, Chem. Commun., 56 (2020) 13113-13116, doi: 10.1039/D0CC05247G.

[6]

L. Jin, C. Liu, D. Wang, M. Liu, T.G. Lee, S.G. Peera, X. Qi, CdN4C0-gra as efficient trifunctional electrocatalyst for the HER, OER and ORR: A density functional theory study, Appl. Surf. Sci., 610 (2023), Article 155580, doi: 10.1016/j.apsusc.2022.155580.

[7]

D. Chen, Q. Sun, C. Han, Y. Guo, Q. Huang, W.A. Goddard, J. Qian, Enhanced oxygen evolution catalyzed by in situ formed Fe-doped Ni oxyhydroxides in carbon nanotubes, J. Mater. Chem. A, 10 (2022) 16007-16015, doi: 10.1039/D2TA04042E.

[8]

T. Tang, S. Jiao, Ji. Han, Z. Wang, J. Guan, Partially crystallized Ni-Fe oxyhydroxides promotes oxygen evolution, Int. J. Hydrog. Energ., 48 (2023) 5774-5782, doi: 10.1016/j. ijhydene.2022.11.118.

[9]

L. Tabassum, M.K. Islam, I.P. Perera, M. Li, X. Huang, H. Tasnim, S.L. Suib, Facile synthesis of transition-metal-doped (Fe, Co, and Ni) CuS/CuO/CS nanorod arrays for superior electrocatalytic oxygen evolution reaction, ACS Appl. Energy Mater., 5 (2022) 12039-12048, doi: 10.1021/acsaem.2c01384.

[10]

C. Li, L. Xie, J. Zhao, L. Gu, J. Wu, G. Li,Interfacial electronic modulation by Fe2O3/NiFe-LDHs heterostructures for efficient oxygen evolution at high current density, Appl. Cataly. B: Environ., 306 (2022), Article 121097, 10.1016/j. apcatb.2022.121097.

[11]

T. Tang, Z. Wang, J. Guan, A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction, Chin. J. Catal., 43 (2022) 636-678, 10.1016/S1872- 2067(21)63945-1.

[12]

K. Zhang, R. Zou, Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges, Small, 17 (2021), Article 2100129, 10.1002/smll.202100129.

[13]

Y. Pan, J. Gao, E. Lv, T. Li, H. Xu, L. Sun, A. Nairan, Q. Zhang, Integration of alloy segregation and surface Co-O Hybridization in carbon-encapsulated CoNiPt alloy catalyst for superior alkaline hydrogen evolution, Adv. Funct. Mater., 33 (2023), Article 202303833, 10.1002/adfm.202303833.

[14]

T. Wang, P. Wang, W. Zang, X. Li, D. Chen, Z. Kou, S. Mu, J. Wang, Nanoframes of Co3O4-Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER, Adv. Funct. Mater., 32 (2022), Article 2107382, 10.1002/adfm.202107382.

[15]

J. Zhang, J. Lian, Q. Jiang, G. Wang, Boosting the OER/ORR/HER activity of Ru-doped Ni/Co oxides heterostructure, Chem. Eng. J., 439 (2022), Article 135634, 10.1016/j. cej.2022.135634.

[16]

M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486 (2012) 43-51, doi: 10.1038/nature11115.

[17]

J. Guan, X. Bai, T. Tang, Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions, Nano Res., 15 (2022) 818-837, doi: 10.1007/s12274-021-3680-9.

[18]

S. Anantharaj, V. Aravindan, Developments and perspectives in 3D transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis, Adv. Energy Mater., 10 (2020), Article 1902666, 10.1002/aenm.201902666.

[19]

L. Zhang, W. Cai, N. Bao, H. Yang, Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy) hydroxide: A novel design to boost oxygen evolution, Adv. Mater., 34 (2022), Article 2110511, 10.1002/adma.202110511.

[20]

X. Bai, L. Wang, B. Nan, T. Tang, X. Niu, J. Guan, Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution, Nano Res., 15 (2022) 6019-6025, doi: 10.1007/s12274-022-4293-7.

[21]

L. Li, X. Cao, J. Huo, J. Qu, W. Chen, C. Liu, Y. Zhao, H. Liu, G. Wang,High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis, J. Energy Chem., 76 (2022) 195-213, doi: 10.1016/j. jechem.2022.09.022.

[22]

Z. Feng, T. Shi, W. Liu, W. Zhang, H. Zhang,Highly active bifunctional electrocatalyst: Nanoporous (Ni, Co)0.85Se anchored on rGO for water and hydrazine oxidation, Int. J. Energ. Res., 46 (2022) 15938-15947, doi: 10.1002/er.8292.

[23]

J. Han, J. Guan, Multicomponent transition metal oxides and (oxy) hydroxides for oxygen evolution, Nano Res., 16 (2022) 1-54, doi: 10.1007/s12274-022-4874-7.

[24]

T. Guo, L. Li, Z. Wang, Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction, Adv. Energy Mater., 12 (2022), Article 202200827, 10.1002/aenm.202200827.

[25]

H. Singh, R. Biswas, I. Ahmed, P. Thakur, A. Kundu, A.R. Panigrahi, B. Banerjee, K.K. Halder, J. Lahtinen, K. Mondal, K.K. Haldar, Dumbbell-shaped ternary transition-metal (Cu, Ni, Co) phosphate bundles: a promising catalyst for the oxygen evolution reaction, ACS Appl. Mater. Interface., 14 (2022) 6570-6581, doi: 10.1021/acsami.1c20356.

[26]

P. Bhanja, Y. Kim, B. Paul, J. Lin, S.M. Alshehri, T. Ahamad, Y.V. Kaneti, A. Bhaumik, Y. Yamauchi, Facile synthesis of nanoporous transition metal-based phosphates for oxygen evolution reaction, ChemCatChem, 12 (2020) 2091-2096, doi: 10.1002/cctc.201901803.

[27]

Y. Zhang, R. Wang, L. Zhu, X. Li, C. Sun, H. Liu, L. Zhu, K. Wang, Carbon quantum dots-Doped Ni3Se4/Co9Se8/Fe3O4 multilayer nanosheets prepared using the one-step solvothermal method to boost electrocatalytic oxygen evolution, Mater. (Basel), 14 (2023), p. 5115, 10.3390/ma16145115.

[28]

T. Zhang, J. Sun, J. Guan, Self-supported transition metal chalcogenides for oxygen evolution, Nano Res., 16 (2023) 8684-8711, doi: 10.1007/s12274-023-5670-6.

[29]

J. Zhao, L. Yang, H. Li, T. Huang, H. Cheng, A. Meng, Y. Lin, P. Wu, X. Yuan, Z. Li,Ni3Se2 nanosheets in-situ grown on 3D NiSe nanowire arrays with enhanced electrochemical performances for supercapacitor and efficient oxygen evolution, Mater. Charact., 172 (2021), Article 110819, 10.1016/j. matchar.2020.110819.

[30]

C. Yang, Y. Lu, W. Duan, Z. Kong, Z. Huang, T. Yang, Y. Zou, R. Chen, S. Wang, Recent progress and prospective of nickel selenide-based electrocatalysts for water splitting, Energ. Fuel., 35 (2021) 14283-14303, doi: 10.1021/acs.energyfuels.1c01854.

[31]

D. Chen, Y. Chen, W. Zhang, R. Cao, Nickel selenide from single-molecule electrodeposition for efficient electrocatalytic overall water splitting, New. J. Chem., 45 (2021) 351-357, doi: 10.1039/D0NJ04966B.

[32]

Y. Li, R. Chen, D. Yan, S. Wang, Regulation of morphology and electronic structure of NiSe2 by Fe for high effective oxygen evolution reaction, Chem.-Asian J., 15 (2020) 3845-3852, doi: 10.1002/asia.202000860.

[33]

C. Zhang, Y. Zhang, S. Zhou, C. Li, Self-supported iron-doping NiSe2 nanowrinkles as bifunctional electrocatalysts for electrochemical water splitting, J. Alloy. Compd., 818 (2020), Article 152833, 10.1016/j. jallcom.2019.152833.

[34]

X. Zhang, H. Pan, Y. Jia, Y. Zhang, Z. Jiang, C. Li, X. Li, L. Bao, R. Ma, K. Wang, Flower-like MOF-74 nanocomposites directed by selenylation towards high-efficient oxygen evolution, J. Colloid Interf. Sci., 623 (2022) 552-560, doi: 10.1016/j. jcis.2022.04.181.

[35]

K. Guo, Y. Wang, S. Yang, J. Huang, Z. Zou, H. Pan, P.S. Shinde, S. Pan, J. Huang, C. Xu,Bonding interface boosts the intrinsic activity and durability of NiSe@Fe2O3 heterogeneous electrocatalyst for water oxidation, Sci. Bull., 66 (2021) 52-61, doi: 10.1016/j. scib.2020.06.003.

[36]

D. Liang, J. Mao, P. Liu, J. Li, J. Yan, W. Song, In-situ doping of Co in nickel selenide nanoflower for robust electrocatalysis towards oxygen evolution, Int. J. Hydrog. Energ., 45 (2020) 27047-27055, doi: 10.1016/j. ijhydene.2020.07.017.

[37]

T. Wang, D. Gao, W. Xiao, P. Xi, D. Xue, J. Wang, Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions, Nano Res., 11 (2018) 6051-6061, doi: 10.1007/s12274-018-2122-9.

[38]

K. Chang, D.T. Tran, J. Wang, N.H. Kim, J.H. Lee, A 3D hierarchical network derived from 2D Fe-doped NiSe nanosheets/carbon nanotubes with enhanced OER performance for overall water splitting, J. Mater. Chem. A, 10 (2022) 3102-3111, doi: 10.1039/D1TA07393A.

[39]

Y. Liu, J. Cao, Y. Chen, M. Wei, X. Liu, X. Li, Q. Wu, B. Feng, Y. Zhang, L. Yang, Regulation of the morphology and electrochemical properties of Ni0.85Se via Fe doping for overall water splitting and supercapacitors, Cryst. Eng. Comm., 24 (2022) 1704-1718, doi: 10.1039/D1CE01555A.

[40]

G. Liu, C. Shuai, Z. Mo, R. Guo, N. Liu, Q. Dong, J. Wang, H. Pei, W. Liu, X. Guo,Fe-doped Ni0.85Se nanospheres interspersed into carbon nanotubes as efficient and stable electrocatalyst for overall water splitting, Electrochim. Acta, 385 (2021), Article 138452, 10.1016/j. electacta.2021.138452.

[41]

Y. Zhang, L. You, Q. Liu, Y. Li, T. Li, Z. Xue, G. Li, Interfacial charge transfer in a hierarchical Ni2P/FeOOH heterojunction facilitates electrocatalytic oxygen evolution, ACS Appl. Mater. Interface., 13 (2021) 2765-2771, doi: 10.1021/acsami.0c20204.

[42]

W. Zhou, Z. Xue, Q. Liu, Y. Li, J. Hu, G. Li, Trimetallic MOF-74 films grown on Ni foam as bifunctional electrocatalysts for overall water splitting, ChemSusChem, 13 (2020) 5647-5653, doi: 10.1002/cssc.202001230.

[43]

S. Niu, W. Jiang, T. Tang, L. Yuan, H. Luo, J. Hu, Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation, Adv. Funct. Mater., 29 (2019), Article 201902180, 10.1002/adfm.201902180.

[44]

X. Xia, G. Zhao, Q. Yan, B. Wang, Q. Wang, H. Xie, High-density defects activating Fe-doped molybdenum sulfide @N-doped carbon heterostructures for efficient electrochemical hydrogen evolution, ACS Sustain. Chem. Eng., 10 (2021) 182-193, doi: 10.1021/acssuschemeng.1c05538.

[45]

Z. Xue, X. Li, Q. Liu, M. Cai, K. Liu, M. Liu, Z. Ke, X. Liu, G. Li, Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution, Adv. Mater., 31 (2019), Article 1900430, 10.1002/adma.201900430.

[46]

H. Pan, X. Zhang, Y. Jia, Y. Zhang, Z. Jiang, C. Sun, X. Li, L. Zhu, K. Wang, Interfacial composite FeOOH enhanced efficient electrocatalytic oxygen evolution of NiSe2/Ni2O3, J. Alloy. Compd., 926 (2022), Article 166779, 10.1016/j. jallcom.2022.166779.

[47]

S. Anantharaj, S. Kundu, S. Noda,The Fe effect: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts, Nano Energy, 80 (2021), Article 105514, 10.1016/j. nanoen.2020.105514.

[48]

X. Meng, J. Han, L. Lu, G. Qiu, Z. Wang, C. Su, Fe2+-doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems, Small, 15 (2019), Article 1902551, 10.1002/smll.201902551.

[49]

S. Zhao, C. Tan, C. He, P. An, F. Xie, S. Jiang, Y. Zhu, K. Wu, B. Zhang, H. Li, J. Zhang, Y. Chen, S. Liu, J. Dong, Z. Tang, Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction, Nat. Energy, 5 (2020) 881-890, doi: 10.1038/s41560-020-00709-1.

[50]

G. Solomon, A. Landström, R. Mazzaro, M. Jugovac, P. Moras, E. Cattaruzza, V. Morandi, I. Concina, A. Vomiero, NiMoO4@Co3O4 core-shell nanorods: In situ catalyst reconstruction toward high efficiency oxygen evolution reaction, Adv. Energy Mater., 11 (2021), Article 2101324, 10.1002/aenm.202101324.

[51]

Z. Tan, L. Sharma, R. Kakkar, T. Meng, Y. Jiang, M. Cao, Arousing the reactive Fe sites in pyrite (FeS2) via integration of electronic structure reconfiguration and in situ electrochemical topotactic transformation for highly efficient oxygen evolution reaction, Inorg. Chem., 58 (2019) 7615-7627, doi: 10.1021/acs.inorgchem.9b01017.

[52]

B. Wu, S. Gong, Y. Lin, T. Li, A. Chen, M. Zhao, Q. Zhang, L. Chen, A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water, Adv. Mater., 34 (2022), Article 2108619, 10.1002/adma.202108619.

[53]

K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol, X. Lu, B. Mao, X. Zhang, J. Fransaer, Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction, Adv. Funct. Mater., 29 (2019), Article 1900315, 10.1002/adfm.201900315.

[54]

Z. Wu, H. Zhang, S. Zuo, Y. Wang, S.L. Zhang, J. Zhang, S. Zang, X.W.D. Lou, Manipulating the local coordination and electronic structures for efficient electrocatalytic oxygen evolution, Adv. Mater., 33 (2021), Article 2103004, 10.1002/adma.202103004.

AI Summary AI Mindmap
PDF (4383KB)

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/