Lishiite, (Ca2□)Sr3(CO3)5, a new burbankite mineral from carbonatite-syenite complex in Shaxiongdong, Hubei, China

Jie Dai , Xiao-dong Pan , Tong Wang , Guo-wu Li , Guan Wang , Shang-ke Xie , Jing Ren , Kun-yang Wang , Ting Li , Tao Wang , Jia-le He , Jin-sha Xu , Gan-fu Shen

China Geology ›› 2025, Vol. 8 ›› Issue (4) : 797 -805.

PDF (4778KB)
China Geology ›› 2025, Vol. 8 ›› Issue (4) :797 -805. DOI: 10.31035/cg2025163
Original Articles
research-article

Lishiite, (Ca2□)Sr3(CO3)5, a new burbankite mineral from carbonatite-syenite complex in Shaxiongdong, Hubei, China

Author information +
History +
PDF (4778KB)

Abstract

Lishiite, (Ca2□)Sr3(CO3)5, is a new mineral species from Shaxiongdong, Hubei Province, China. It mainly occours as conchoidal crystals and with combination of hexagonal prism and pyramid and is associated with calcite, K-feldspar, albite, aegirine, apatite, and ancylite-(Ce)(?) and strontianite etc. Lishiite is brittle with conchiform fracture and has a Mohs hardness of approximately 4 and none cleavages were observed. The Vickers microhardness (VHN10) is 197.42 kg/mm2 (range: 166.88 kg/mm2 to 214.58 kg/mm2), and the calculated density of lishiite is 3.696 g/cm3. Hand specimen of lishiite are yellow-brown. The empirical chemical formula of the lishiite is A(Ca1.18Sr0.25Na0.191.38)Σ3.00 B[Sr2.17(Ce0.42La0.24Nd0.09Eu0.01)Σ0.76 Ba0.07]Σ3.00 (C5.05O15). As a member of the burbankite group, the general formula of lishiite follows the general formula A3B3(CO3)5, where A=Na, Ca, or and B=Sr, Ba, REE, or Ca. Its crystal structure is hexagonal (space group P63mc) with unit cell parameters a=10.4898(5) Å, c=6.4167(5) Å, and V=611.47(6) Å3, characterized by layers of AO8 and BO10 polyhedra connected to [CO3]3− groups. The discovery of lishiite provides new insights into the evolutionary history of rare earth element (REE) carbonate deposit formation.

Keywords

Lishiite / (Ca2□)Sr3(CO3)5 / New mineral species / Burbankite group / Carbonatite-syenite complex / Mineral exploration engineering / Shaxiongdong

Cite this article

Download citation ▾
Jie Dai, Xiao-dong Pan, Tong Wang, Guo-wu Li, Guan Wang, Shang-ke Xie, Jing Ren, Kun-yang Wang, Ting Li, Tao Wang, Jia-le He, Jin-sha Xu, Gan-fu Shen. Lishiite, (Ca2□)Sr3(CO3)5, a new burbankite mineral from carbonatite-syenite complex in Shaxiongdong, Hubei, China. China Geology, 2025, 8(4): 797-805 DOI:10.31035/cg2025163

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jie Dai and Gan-fu Shen conceived of the presented idea. Guo-wu Li did X-ray diffraction experiment and structural
refinement. Guan Wang, Jin-sha Xu, and Kun-yang Wang carried out the EPMA experiment. Jia-le He and Jing Ren did Laser Raman Spectrum experiment. Shang-ke Xie worked for field work. Tao Wang and Ting Li cut samples using FIBSEM. Jie Dai, Gan-fu Shen, Xiao-dong Pan and Guo-wu Li mainly contributed to the final manuscript. All authors discussed the results.

Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgments

The authors are grateful to Chuan-long Mou for his help and the professional advice, to Qi Deng for his foundation supporting the field work. The authors sincerely appreciate the constructive suggestions from three anonymous peer reviewers and Editorial Board of China Geology. This research was jointly supported by the project China Geological Survey (DD202501026090) and the National Key Research and Development Program of China (2024YFC2910102).

Supplementary attachment

Supplementary attachment of the acceptance letter from Ferdinando Bosi, Chairman of the CNMNC (Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association) and the lishiite.cif document to this article can be found online at doi: 10.31035/cg2025163.

References

[1]

Belovitskaya YV, Pekov IV, Kabalov YK. 2000. Refinement of the crystal structures of low-rare-earth and "typical" burbankites by the Rietveld method. Crystallography Reports, 45(1),26-29. doi: 10.1134/1.171131.

[2]

Belovitskaya YV and Pekov V. 2004. Genetic mineralogy of the burbankite group. New Data on Minerals, 39, 50-64. https://rruff.info/uploads/NDMM39_50.pdf.

[3]

Brown ID. 1977. Predicting bond lengths in inorganic crystals. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 33(5), 1305-1310. doi: 10.1107/s0567740877005998.

[4]

Bernhard B, Andrew HR, Martin R, Martin H, and Arndt K. 1999. Burbankite, a (Sr, REE, Na, Ca)-carbonate in fluid inclusions from carbonatite-derived fluids: Identification and characterization using Laser Raman spectroscopy, SEM-EDX, and synchrotron micro-XRF analysis. American Mineralogist, 84(7-8), 1117-1125. doi: 10.2138/am-1999-7-814.

[5]

Cao HW, Li GM, Zhang LK, Zhang XF, Yu X, Chen Y, Lin B, Pei QM, Tang Li, Zou H. 2022. Genesis of Himalayan leucogranite and its potentiality of rare-metal mineralization. Sedimentary Geology and Tethyan Geology, 42(2), 189-211 doi: 10.19826/j.cnki.1009-3850.2022.04004. (in Chinese with English abstract).

[6]

Cesbron F, Gilles C, Pelisson P and Saugues JC. 1988. La rémondite (Ce), un nouveau carbonate de terres rares de la famille de la burbankite. Comptes Rendu, Academie des Sciences, Paris, Ser II, 307, 915-920 (in French with English abstract).

[7]

Chen TT, Chao GY.1974. Burbankite from Mont St. Hilaire, Quebec. Canadian Mineralogist, 12, 342-345.

[8]

Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. 2009. OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi: 10.1107/s0021889808042726.

[9]

Edahbi M, Plante B, Benzaazoua M, Kormos L, Pelletier M. 2018. Rare earth elements (La,Ce,Pr,Nd, and Sm ) from a carbonatite deposit: Mineralogical characterization and geochemical behavior. Minerals, 8(2), 55. doi: 10.3390/min8020055.

[10]

Fan HR, Yang KF, Hu FF, Liu S, Wang KY. 2016. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geoscience Frontiers, 7(3), 335-344. doi: 10.1016/j.gsf.2015.11.005.

[11]

Fitzpatrick J, Pabst A. 1977. Burbankite from the Green River Formation, Wyoming. American Mineralogy, 62 (1-2), 158-163.

[12]

Fu XF, Hao XF, Ruan LS, Liang B, Zhang GQ, Hou LW, Pan M, Tang Y. 2023. Metallogenic characteristics and exploration prospecting of the 3R mineral resources in Sichuan, China. Sedimentary Geology and Tethyan Geology, 43(1), 1-18 doi: 10.19826/j.cnki.1009-3850.2022.05006. (in Chinese with English abstract).

[13]

Gagné OC, Hawthorne FC. 2015. Comprehensive derivation of bondvalence parameters for ion pairs involving oxygen. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 71(5), 562-578. doi: 10.1107/S2052520615016297.

[14]

Guo JC, Nie F, Wu SY, Liu H, Zou JZ, Ran GH, Lei D, Lai YG. 2024. The discovery and geological significance of the Mantoushan ionadsorption type heavy rare earth deposit in Dechang, western Sichuan. Sedimentary Geology and Tethyan Geology, 44(1), 86-99 doi: 10.19826/j.cnki.10093850.2023.10004. (in Chinese with English abstract).

[15]

Grice JD, Van Velthuizen J, Gault RA. 1994. Petersenite-(Ce), a new mineral from Mont Saint-Hilaire, and its structural relationship to other REE carbonates. The Canadian Mineralogist, 32, 405-414.

[16]

Hatert F, Burke EAJ. 2008. The ima-cnmnc dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46(3), 717-728. doi: 10.3749/canmin.46.3.717.

[17]

Hornig I, Kjarsgaard BA. 1998. Chemistry of perovskite from kimberlites and mantle xenoliths: Implications for the trace element chemistry of the mantle. Extended Abstracts of the 7th International Kimberlite Conference, Cape Town, 331-333.

[18]

Le Bas MJ. 1981. Carbonatite magmas. Mineralogical Magazine, 44(334), 133-140. doi: 10.1180/minmag.1981.044.334.02.

[19]

Li S, 1991. Geochemistry and petrogenesis of the Shaxiongdong carbonatites, Hubei Province. Geochimica 3, 245-254 (in Chinese with English abstract).

[20]

Merlini M, Milani S, Maurice J. 2020. Structures and crystal chemistry of carbonate at Earth's mantle conditions. Carbon in Earth's Interior, edited by: Manning C, Lin JF, Mao W, Geophysical Monograph Series, AGU, John Wiley and Sons, 87-95. doi: 10.1002/9781119508229.ch9.

[21]

Milani S, Spartà D, Fumagalli P, Joseph B, Borghes R, Chenda V, Maurice J, Bais G, Merlini M. 2022. High-pressure and hightemperature structure and equation of state of Na3 Ca2 La(CO3)5 burbankite, European Journal of Mineralogy, 34, 351-358, doi: 10.5194/ejm-34-351-2022.

[22]

Moine BN, Grégoire M, O'Reilly SY, Delpech G, Sheppard SMF, Lorand JP, Renac C, Giret A, Cottin JY. 2004. Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago. Lithos, 75(1-2), 239-252. doi: 10.1016/j.lithos.2003.12.019.

[23]

Pecora WT, Kerr JH. 1953. Burbankite and calkinsite, two new carbonate minerals from Montana. American Mineralogist, 38, 11691183. http://www.minsocam.org/ammin/AM38/AM38_1169.pdf.

[24]

Rashchenko SV, Bakakin VV, Shatskiy AF, Gavryushkin PN, Seryotkin YV, Litasov KD. 2017. Noncentrosymmetric Na2 Ca4 (CO3 )5 carbonate of " M13 M23 XY3 Z " structural type and affinity between borate and carbonate structures for design of new optical materials. Crystal Growth & Design, 17(11), 6079-6084. doi: 10.1021/acs.cgd.7b01161.

[25]

Samson IM, Wood SA, Finucane K. 2004. Fluid inclusion characteristics and genesis of the fluorite-parisite mineralization in the snowbird deposit, Montana. Economic Geology, 99(8): 1727-1744. doi: 10.2113/gsecongeo.99.8.1727.

[26]

Schmitt AK, Trumbull RB, Dulski P, Emmermann R. 2002. Zr-Nb-REE mineralization in peralkaline granites from the Amis complex, brandberg (Namibia): Evidence for magmatic pre-enrichment from melt inclusions. Economic Geology, 97(2): 399-413. doi: 10.2113/gsecongeo.97.2.399.

[27]

Schlüter J, Malcherek T, Pohl D. 2007. Sanromanite, Na2 CaPb3 (CO3 )5, from the Santa Rosa mine, Atacama desert, Chile, a new mineral of the burbankite group. Neues Jahrbuch Für MineralogieAbhandlungen, 183(2), 117-121. doi: 10.1127/0077-7757/2007/0068.

[28]

Sheldrick GM. 2015. SHELXT-integrated space-group and crystalstructure determination. Acta Crystallographica Section A, Foundations and Advances, 71 (1), 3-8. doi: 10.1107/S2053273314026370.

[29]

Shen GF, Yang GM, Xu JS. 2005. Maoniupingite-Ce: A new rare-earth mineral from the Maoniuping rare-earth deposit in Mianning, Sichuan. Sedimentary Geology and Tethyan Geology, 25(1-2), 210-216 (in Chinese with English abstract).

[30]

Simandl GJ, Paradis S. 2018. Carbonatites: Related ore deposits, resources, footprint, and exploration methods. Applied Earth Science, 127(4), 123-152. doi: 10.1080/25726838.2018.1516935.

[31]

Smith DGW, Nickel EH. 2007. A system for codification for unnamed minerals: Report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. Canadian Mineralogist, 45, 983-990 doi: 10.2113/gscanmin.45.4.983.

[32]

Van Velthuizen J, Gault R, Grice JD. 1995. Calcioburbankite, Na3 (Ca, REE, Sr)3 (CO3 )5, a new mineral species from Mont Saint Hilaire, Quebec, and its relationship to the burbankite group of minerals. The Canadaian Mineralogist, 33, 1231-1235.

[33]

Weng ZH, Jowitt SM, Mudd GM, Haque N. 2015. A detailed assessment of global rare earth element resources: Opportunities and challenges. Economic Geology, 110(8), 1925-1952. doi: 10.2113/econgeo.110.8.1925.

[34]

Watts KE, Haxel GB, Miller DM. 2022. Temporal and petrogenetic links between Mesoproterozoic alkaline and carbonatite magmas at mountain pass, California. Economic Geology, 117(1), 1-23. doi: 10.5382/econgeo.4848.

[35]

Wall F, Rollat A, Pell RS. 2017. Responsible sourcing of critical metals. Elements, 13(5), 313-318. doi: 10.2138/gselements.13.5.313.

[36]

Pekov IV, Chukanov NV, Kononkova NN, Zadov AE, Belovitskaya YV. 2000. Remondite-(La) Na3 (La,Ce,Ca)3 (CO3 )5-a new mineral of the burbankite family. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 129, 53-60 (in Russian with English abstract).

[37]

Wang P, Pan ZL, Weng LB. 1982. Systematic Mineralogy (Volume III). Beijing, Geological Press, 375-376 (in Chinese).

[38]

Wang T, Yan FM. 1989. Burbankite in Biotite-Aegirine Carbonatite from Hubei Province. Acta Mineralogica Sinica, 9(4), 345-351 (in Chinese).

[39]

Wyllie PJ, Jones AP, Deng J. 1996. Rare earth elements in carbonaterich melts from mantel to crust. In: Jones AP, Wall F, Williams CT (Eds.), Rare Earth Minerals: Chemistry, Origin and Ore Deposits. The Mineralogical Society Series, Chapman and Hall, London, 7, 77-103.

[40]

Williams-Jones AE, Samson IM, Olivo GR. 2000. The genesis of hydrothermal fluorite-REE deposits in the gallinas mountains, new Mexico. Economic Geology, 95(2), 327-341. doi: 10.2113/gsecongeo.95.2.327.

[41]

Xu C, Campbell IH, Allen CM, Chen YJ, Huang ZL, Qi L, Zhang GS, Yan ZF. 2008. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos, 105(1-2), 118-128. doi: 10.1016/j.lithos.2008.03.002.

[42]

Xu C, Chakhmouradian AR, Taylor RN, Kynicky J, Li WB, Song WL, Fletcher IR. 2014. Origin of carbonatites in the south Qinling Orogen: Implications for crustal recycling and timing of collision between the south and North China blocks. Geochimica et Cosmochimica Acta, 143, 189-206. doi: 10.1016/j.gca.2014.03.041.

[43]

Xu C, Kynicky J, Chakhmouradian AR, Campbell IH, Allen CM. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos, 118(1-2), 145-155. doi: 10.1016/j.lithos.2010.04.003.

[44]

Yeremenko GK, Bel'ko VA. 1982. Khanneshite, (Na, Ca)3(Ba, Sr, RE, Ca)3 (CO3 )5-a new mineral of the burbankite group. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 111, 321-324 (in Russian).

[45]

Zaitsev AN, Wall F, Le Bas MJ. 1998. REE-Sr-Ba minerals from the khibina carbonatites, Kola Peninsula, Russia: Their mineralogy, paragenesis and evolution. Mineralogical Magazine, 62(2), 225-250. doi: 10.1180/002646198547594.

[46]

Zhang M, Li Y, He XC, Feng JL, Zheng Y, Wang HK, Du JG, Wang SS. 2018. Mineralization of the ion adsorption-type REE deposits in the central part of the Lincang granites in western Yunnan. Sedimentary Geology and Tethyan Geology, 38(4), 37-47 (in Chinese with English abstract).

AI Summary AI Mindmap
PDF (4778KB)

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/