Multi-compartmental migration and ecological-health risks of trace metals in Dexing mining concentration areas: A holistic quantitative assessment
Xiao-tao Zhang , Jun-jie Hu , Bin Shen , Man-dan Huang , Shan-hong Lan , Zhi-hang Xin
China Geology ›› 2025, Vol. 8 ›› Issue (3) : 500 -513.
Multi-compartmental migration and ecological-health risks of trace metals in Dexing mining concentration areas: A holistic quantitative assessment
To address the critical gap in linking multi-compartmental transfer with risks of trace metals (Cd, Pb, As, Cr, Ni) in mining environments. This study systematically investigated the trans-media migration of Cd, Pb, As, Cr, and Ni in China’s Dexing copper mining district through paired sampling of water-amphibians, soil-earthworms, and air-lichens. Advanced methodologies were employed, including ICP-MS quantification for heavy metals, geochemical indices (Igeo, BCF, BAF) to assess bioavailability, NMDS for source apportionment, and HPLC to detect DNA methylation alterations. Aquatic systems exhibited severe Cd/Pb enrichment (16.25-24.42 μg/L; 11-15× WHO limits), while agricultural soils showed extreme Cd contamination (1.5 mg/kg; 15× background). Biota displayed metal-specific accumulation: frogs achieved BCFs >1,000 for Pb/Cd, earthworms showed pH-modulated BAFs >2.5 for Cd/As, and lichens recorded 100-1,000× atmospheric Cr enrichment. NMDS resolved three contamination pathways: mining-derived Cd/Pb/As (MDS1 = 2.56), atmospheric Cr (PC2 = 1.84), and geogenic Ni. Cd dominated ecological risks (Eri = 554.25; RI 300), while atmospheric Cr drove carcinogenic risks (TCR = 4.11×10−5) exceeding safety thresholds. The source-media-biota-risk framework pioneers the integration of geochemical transport with epigenetic toxicity biomarkers, demonstrating that sub-lethal Cd/Pb exposure induces genome-wide DNA hypomethylation (2.4%-6.6% reduction; ρ = −0.71 to −0.91). This paradigm shift prioritizes bioavailability-informed regulations over concentration-based metrics, offering actionable strategies for sustainable development goals-aligned mining pollution control.
Copper mining operations / Trace metal(loid)s contamination / Cross-media transfer / Water-amphibians / Soil-earthworms / Air-lichens / DNA methylation biomarkers / Biogeochemical processes / Risk assessment / Sustainable Development Goals (SDG3) / Dexing mining area / Environmental geological survey engineering
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
USEPA. 2001. Risk assessment guidance for superfund: volume III -part a, process for conducting probabilistic risk assessment. US environmental protection agency, Washington, DC. |
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
/
| 〈 |
|
〉 |