Landslide susceptibility assessment based on an interpretable coupled FR-RF model: A case study of Longyan City, Fujian Province, Southeast China

Zong-yue Lu , Gen-yuan Liu , Xi-dong Zhao , Kang Sun , Yan-si Chen , Zhi-hong Song , Kai Xue , Ming-shan Yang

China Geology ›› 2025, Vol. 8 ›› Issue (2) : 281 -294.

PDF (3214KB)
China Geology ›› 2025, Vol. 8 ›› Issue (2) :281 -294. DOI: 10.31035/cg2024123
Original Articles
research-article

Landslide susceptibility assessment based on an interpretable coupled FR-RF model: A case study of Longyan City, Fujian Province, Southeast China

Author information +
History +
PDF (3214KB)

Abstract

To enhance the prediction accuracy of landslides in in Longyan City, China, this study developed a methodology for geologic hazard susceptibility assessment based on a coupled model composed of a Geographic Information System (GIS) with integrated spatial data, a frequency ratio (FR) model, and a random forest (RF) model (also referred to as the coupled FR-RF model). The coupled FR-RF model was constructed based on the analysis of nine influential factors, including distance from roads, normalized difference vegetation index (NDVI), and slope. The performance of the coupled FR-RF model was assessed using metrics such as Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves, yielding Area Under the Curve (AUC) values of 0.93 and 0.95, which indicate high predictive accuracy and reliability for geological hazard forecasting. Based on the model predictions, five susceptibility levels were determined in the study area, providing crucial spatial information for geologic hazard prevention and control. The contributions of various influential factors to landslide susceptibility were determined using SHapley Additive exPlanations (SHAP) analysis and the Gini index, enhancing the model interpretability and transparency. Additionally, this study discussed the limitations of the coupled FR-RF model and the prospects for its improvement using new technologies. This study provides an innovative method and theoretical support for geologic hazard prediction and management, holding promising prospects for application.

Keywords

Machine learning / Landslide susceptibility assessment / Geographic Information System (GIS) / Coupled FR-RF model / Random forest / Interpretability / SHapley Additive exPlanations / Geological disater prevention engineering / Longyan

Cite this article

Download citation ▾
Zong-yue Lu, Gen-yuan Liu, Xi-dong Zhao, Kang Sun, Yan-si Chen, Zhi-hong Song, Kai Xue, Ming-shan Yang. Landslide susceptibility assessment based on an interpretable coupled FR-RF model: A case study of Longyan City, Fujian Province, Southeast China. China Geology, 2025, 8(2): 281-294 DOI:10.31035/cg2024123

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zong-yue Lu, Gen-yuan Liu, Xi-dong Zhao, Yan-si Chen and Kang Sun conceived of the presented idea. Zong-yue Lu,Yan-si Chen and Kang Sun carried out the experiment. All authors discussed the results and contributed to the final manuscript.

Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgments

This research was supported by the project of the China Geological Survey (DD20230591). The datasets of rainfall are provided by National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn). The Normalized Difference Vegetation Index dataset is provided by National Ecosystem Science Data Center, National Science & Technology Infrastructure of China (http://www.nesdc.org.cn).

References

[1]

Abraham MT, Satyam N, Lokesh R, Pradhan B, Alamri A. 2021. Factors affecting landslide susceptibility mapping: Assessing the influence of different machine learning approaches, sampling strategies and data splitting. Land, 10(9), 989. doi: 10.3390/land10090989.

[2]

Achour Y, Pourghasemi HR. 2020. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3), 871-883. doi: 10.1016/j.gsf.2019.10.001.

[3]

Achu AL, Aju CD, Di Napoli M, Prakash P, Gopinath G, Shaji E, Chandra V. 2023. Machine-learning based landslide susceptibility modelling with emphasis on uncertainty analysis. Geoscience Frontiers, 14(6), 101657. doi: 10.1016/j.gsf.2023.101657.

[4]

Al-Najjar HAH, Pradhan B, Beydoun G, Sarkar R, Park HJ, Alamri A. 2023. A novel method using explainable artificial intelligence (XAI)based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset. Gondwana Research, 123, 107-124. doi: 10.1016/j.gr.2022.08.004.

[5]

Ali R, Kuriqi A, Kisi O. 2020. Human-environment natural disasters interconnection in China: A review. Climate, 8(4), 48. doi: 10.3390/cli8040048.

[6]

Arabameri A, Pradhan B, Rezaei K, Lee CW. 2019. Assessment of landslide susceptibility using statistical- and artificial intelligencebased FR-RF integrated model and multiresolution DEMs. Remote Sensing, 11(9), 999. doi: 10.3390/rs11090999.

[7]

Breiman L. 2001. Random forests. Machine Learning, 45(1), 5-32. doi: 10.1023/A:1010933404324.doi:10.1023/A:1010933404324.

[8]

Cascini L, Ciurleo M, Di Nocera S, Gullà G. 2015. A new-old approach for shallow landslide analysis and susceptibility zoning in finegrained weathered soils of southern Italy. Geomorphology, 241, 371-381. doi: 10.1016/j.geomorph.2015.04.017.[LinkOut.

[9]

Catani F, Lagomarsino D, Segoni S, Tofani V. 2013. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11), 2815-2831. doi: 10.5194/nhess-13-2815-2013.

[10]

Chen W, Zhang S, Li R, Shahabi H. 2018. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the Total Environment, 644, 1006-1018. doi: 10.1016/j.scitotenv.2018.06.389.

[11]

Chen YS, Hou JL, Huang CH, Zhang Y, Li XH. 2021. Mapping maize area in heterogeneous agricultural landscape with multi-temporal sentinel-1 and sentinel-2 images based on random forest. Remote Sensing, 13(15), 2988. doi: 10.3390/rs13152988.

[12]

Chen Z, Chang RC, Pei XJ, Yu ZB, Guo HD, He ZQ, Zhao WB, Zhang QP, Chen Y. 2023. Tunnel geothermal disaster susceptibility evaluation based on interpretable ensemble learning: A case study in Ya'an-Changdu section of the Sichuan-Tibet traffic corridor. Engineering Geology, 313, 106985. doi: 10.1016/j.enggeo.2023.106985.

[13]

Chen Z, Song DQ. 2023. Modeling landslide susceptibility based on convolutional neural network coupling with metaheuristic optimization algorithms. International Journal of Digital Earth, 16(1), 3384-3416. doi: 10.1080/17538947.2023.2249863.

[14]

Choi J, Oh HJ, Lee HJ, Lee C, Lee S. 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Engineering Geology, 124, 12-23. doi: 10.1016/j.enggeo.2011.09.011.

[15]

Dai XL, Zhu YQ, Sun K, Zou Q, Zhao S, Li WR, Hu L, Wang S. 2023. Examining the spatially varying relationships between landslide susceptibility and conditioning factors using a geographical random forest approach: A case study in Liangshan, China. Remote Sensing, 15(6), 1513. doi: 10.3390/rs15061513.

[16]

Ding YX, Peng SZ. 2020. Spatiotemporal trends and attribution of drought across China from 1901-2100. Sustainability, 12(2), 477. doi: 10.3390/su12020477.

[17]

Dong JW, Zhou Y, You NS. 2021. China 30 m Annual Maximum NDVI Dataset from 2000 to 2022 [DS/OL]. National Ecosystem Science Data Center. doi: https://doi.org/10.12199/nesdc.ecodb.rs.2021.012.

[18]

Dong N, You L, Cai WJ, Li G, Lin H. 2018. Land use projections in China under global socioeconomic and emission scenarios: Utilizing a scenario-based land-use change assessment framework. Global Environmental Change, 50, 164-177. doi: 10.1016/j.gloenvcha.2018.04.001.

[19]

Dou J, Yamagishi H, Pourghasemi HR, Yunus AP, Song X, Xu YR, Zhu ZF. 2015. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749-1776. doi: 10.1007/s11069-015-1799-2.

[20]

Dou J, Yunus AP, Merghadi A, Shirzadi A, Nguyen H, Hussain Y, Avtar R, Chen YL, Pham BT, Yamagishi H. 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of The Total Environment, 720, 137320. doi: 10.1016/j.scitotenv.2020.137320.

[21]

Ekmekcioğlu Ö, Koc K. 2022. Explainable step-wise binary classification for the susceptibility assessment of geo-hydrological hazards. Catena, 216, 106379. doi: 10.1016/j.catena.2022.106379.

[22]

Eftekhari M, Khashei-Siuki A. 2025. Evaluating machine learning methods for predicting groundwater fluctuations using GRACE satellite in arid and semi-arid regions. Journal of Groundwater Science and Engineering, 13(1), 5-21 doi: 10.26599/JGSE.2025.9280035.

[23]

Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J. 2019. Evaluation of different machine learning methods and deeplearning convolutional neural networks for landslide detection. Remote Sensing, 11(2), 196. doi: 10.3390/rs11020196.

[24]

Goetz JN, Brenning A, Petschko H, Leopold P. 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers & Geosciences, 81, 1-11. doi: 10.1016/j.cageo.2015.04.007.

[25]

He WC, Chen GP, Zhao JS, Lin YL, Qin BG, Yao WL, Cao Q. 2023. Landslide susceptibility evaluation of machine learning based on information volume and frequency ratio: A case study of Weixin County, China. Sensors, 23(5), 2549. doi: 10.3390/s23052549.

[26]

Huang FM, Cao ZS, Jiang SH, Zhou CB, Huang JS, Guo ZZ. 2020. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides, 17(12), 2919-2930. doi: 10.1007/s10346-020-01473-9.

[27]

Huang FM, Teng ZK, Yao C, Jiang SH, Catani F, Chen W, Huang JS. 2024. Uncertainties of landslide susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method. Journal of Rock Mechanics and Geotechnical Engineering, 16(1), 213-230. doi: 10.1016/j.jrmge.2023.11.001.

[28]

Huang FM, Yin KL, Huang JS, Gui L, Wang P. 2017. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Engineering Geology, 223, 11-22. doi: 10.1016/j.enggeo.2017.04.013.

[29]

Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425-439. doi: 10.1007/s10346-013-0391-7.

[30]

Kulsoom I, Hua WH, Hussain S, Chen QH, Khan G, Dai SH. 2023. SBAS-InSAR based validated landslide susceptibility mapping along the karakoram highway: A case study of Gilgit-Baltistan, Pakistan. Scientific Reports, 13, 3344. doi: 10.1038/s41598-023-30009-z.

[31]

Kumar C, Walton G, Santi P, Luza C. 2023. An ensemble approach of feature selection and machine learning models for regional landslide susceptibility mapping in the arid mountainous terrain of southern Peru. Remote Sensing, 15(5), 1376. doi: 10.3390/rs15051376.

[32]

Lee S, Pradhan B. 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33-41. doi: 10.1007/s10346-006-0047-y.

[33]

Li CY, Wang XC, He CZ, Wu X, Kong ZY, Li XL. 1957. China national digital geological map (public version at 1: 200000 scale) spatial database (V1) [DB]. Development and Research Center, China Geological Survey, China Geological Survey, National Geological Archives of China. doi: 10.12029/gc2019Z101.

[34]

Li CY, Wang XC, He CZ, Wu X, Kong ZY, Li XL. 2019. China national digital geological map (public version at 1:200000 scale) spatial database. Geology in China, 46(S1), 1-10. doi: 10.12029/gc2019Z101.

[35]

Li CD, Feng PF, Jiang XH, Zhang S, Meng J, Li BC. 2024. Extensive identification of landslide boundaries using remote sensing images and deep learning method. China Geology, 7(2), 277-290 doi: 10.31035/cg2023148.

[36]

Li T, Xie CC, Xu C, Qi WW, Huang YD, Li L. 2024. Automated machine learning for rainfall-induced landslide hazard mapping in Luhe County of Guangdong Province, China. China Geology, 7(2), 315-329 doi: 10.31035/cg2024064.

[37]

Li MX, Wang HY, Chen JL, Zheng K. 2024. Assessing landslide susceptibility based on the random forest model and multi-source heterogeneous data. Ecological Indicators, 158, 111600. doi: 10.1016/j.ecolind.2024.111600.

[38]

Linardatos P, Papastefanopoulos V, Kotsiantis S. 2020. Explainable AI: A review of machine learning interpretability methods. Entropy, 23(1), 18. doi: 10.3390/e23010018.

[39]

Liu LL, Zhang YL, Xiao T, Yang C. 2022. A frequency ratio-based sampling strategy for landslide susceptibility assessment. Bulletin of Engineering Geology and the Environment, 81(9), 360. doi: 10.1007/s10064-022-02836-3.

[40]

Liu MY, Xu B, Li ZW, Mao WX, Zhu Y, Hou JX, Liu WZ. 2023. Landslide susceptibility zoning in Yunnan Province based on SBASInSAR technology and a random forest model. Remote Sensing, 15(11), 2864. doi: 10.3390/rs15112864.

[41]

Lombardo L, Opitz T, Ardizzone F, Guzzetti F, Huser R. 2020. Spacetime landslide predictive modelling. Earth-Science Reviews, 209, 103318. doi: 10.1016/j.earscirev.2020.103318.

[42]

Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee SI. 2020. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56-67. doi: 10.1038/s42256-019-0138-9.

[43]

Ma ZJ, Mei G, Piccialli F. 2021. Machine learning for landslides prevention: A survey. Neural Computing and Applications, 33(17), 10881-10907. doi: 10.1007/s00521-020-05529-8.

[44]

Meena SR, Soares LP, Grohmann CH, Van Westen C, Bhuyan K, Singh RP, Floris M, Catani F. 2022. Landslide detection in the Himalayas using machine learning algorithms and U-Net. Landslides, 19(5), 1209-1229. doi: 10.1007/s10346-022-01861-3.

[45]

Ozturk U, Pittore M, Behling R, Roessner S, Andreani L, Korup O. 2021. How robust are landslide susceptibility estimates? Landslides, 18(2), 681-695. doi: 10.1007/s10346-020-01485-5.

[46]

Pandey VK, Pourghasemi HR, Sharma MC. 2020. Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya. Geocarto International, 35(2), 168-187. doi: 10.1080/10106049.2018.1510038.

[47]

Peduto D, Nicodemo G, Caraffa M, Gullà G. 2018. Quantitative analysis of consequences to masonry buildings interacting with slow-moving landslide mechanisms: A case study. Landslides, 15(10), 2017-2030. doi: 10.1007/s10346-018-1014-0.

[48]

Peng SZ. (2020). 1-km monthly precipitation dataset for China (1901-2022): National Tibetan Plateau Data Center. doi: https://doi. org/10.5281/zenodo. 3114194.

[49]

Peng SZ, Ding YX, Liu WZ, Li Z. 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11(4), 1931-1946. doi: 10.5194/essd-11-1931-2019.

[50]

Peng SZ, Ding YX, Wen ZM, Chen YM, Cao Y, Ren JY. 2017. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100. Agricultural and Forest Meteorology, 233, 183-194. doi: 10.1016/j.agrformet.2016.11.129.

[51]

Peng SZ, Gang CC, Cao Y, Chen YM. 2018. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. International Journal of Climatology, 38(5), 2250-2264. doi: 10.1002/joc.5331.

[52]

Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Tran TTT, Bui DT. 2019. Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 175, 203-218. doi: 10.1016/j.catena.2018.12.018.

[53]

Pradhan B, Dikshit A, Lee S, Kim H. 2023. An explainable AI (XAI) model for landslide susceptibility modeling. Applied Soft Computing, 142, 110324. doi: 10.1016/j.asoc.2023.110324.

[54]

Prakash N, Manconi A, Loew S. 2020. Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models. Remote Sensing, 12(3), 346. doi: 10.3390/rs12030346.

[55]

Qiu HJ, Xu Y, Tang BZ, Su LL, Li YJ, Yang DD, Ullah M. 2024. Interpretable landslide susceptibility evaluation based on model optimization. Land, 13(5), 639. doi: 10.3390/land13050639.

[56]

Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A. 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725-742. doi: 10.1007/s12517-012-0807-z.

[57]

Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. EarthScience Reviews, 180, 60-91. doi: 10.1016/j.earscirev.2018.03.001.

[58]

Rohan T, Shelef E, Mirus B, Coleman T. 2023. Prolonged influence of urbanization on landslide susceptibility. Landslides, 20(7), 14331447. doi: 10.1007/s10346-023-02050-6.

[59]

Sajadi P, Sang YF, Gholamnia M, Bonafoni S, Mukherjee S. 2022. Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms. Geoscience Letters, 9(1), 9. doi: 10.1186/s40562-022-00218-x.

[60]

Shahabi H, Ahmadi R, Alizadeh M, Hashim M, Al-Ansari N, Shirzadi A, Wolf ID, Ariffin EH. 2023. Landslide susceptibility mapping in a mountainous area using machine learning algorithms. Remote Sensing, 15(12), 3112. doi: 10.3390/rs15123112.

[61]

Shahabi H, Hashim M. 2015. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific Reports, 5, 9899. doi: 10.1038/srep09899.

[62]

Shahzad N, Ding X, Abbas S. 2022. A comparative assessment of machine learning models for landslide susceptibility mapping in the rugged terrain of northern Pakistan. Applied Sciences, 12(5), 2280. doi: 10.3390/app12052280.

[63]

Sun DL, Xu JH, Wen HJ, Wang DZ. 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Engineering Geology, 281, 105972. doi: 10.1016/j.enggeo.2020.105972.

[64]

Ullah K, Wang Y, Fang ZC, Wang LZ, Rahman M. 2022. Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geoscience Frontiers, 13(5), 101425. doi: 10.1016/j.gsf.2022.101425.

[65]

Wang D, Thunéll S, Lindberg U, Jiang L, Trygg J, Tysklind M. 2022. Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods. Journal of Environmental Management, 301, 113941. doi: 10.1016/j.jenvman.2021.113941.

[66]

Wang HB, Liu GJ, Xu WY, Wang GH. 2005. GIS-based landslide hazard assessment: An overview. Progress in Physical Geography: Earth and Environment, 29(4), 548-567. doi: 10.1191/0309133305pp462ra.

[67]

Wang HJ, Liang QX, Hancock JT, Khoshgoftaar TM. 2024. Feature selection strategies: A comparative analysis of SHAP-value and importance-based methods. Journal of Big Data, 11(1), 44. doi: 10.1186/s40537-024-00905-w.

[68]

Wang YL, Ling YB, Chan TO, Awange J. 2024. High-resolution earthquake-induced landslide hazard assessment in Southwest China through frequency ratio analysis and LightGBM. International Journal of Applied Earth Observation and Geoinformation, 131, 103947. doi: 10.1016/j.jag.2024.103947.

[69]

Yang JL, Dong JW, Xiao XM, Dai JH, Wu CY, Xia JY, Zhao GS, Zhao MM, Li ZL, Zhang Y, Ge Q. 2019. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sensing of Environment, 233, 111395. doi: 10.1016/j.rse.2019.111395.

[70]

Yang ZQ, Qi WW, Xu C, Shao XY. 2024. Exploring deep learning for landslide mapping: A comprehensive review. China Geology, 7(2), 330-350 doi: 10.31035/cg2024032.

[71]

Yao JM, Yao X, Zhao Z, Liu XH. 2023. Performance comparison of landslide susceptibility mapping under multiple machine-learning based models considering InSAR deformation: A case study of the upper Jinsha River. Geomatics, Natural Hazards and Risk, 14(1), 2212833. doi: 10.1080/19475705.2023.2212833.

[72]

Yao KZ, Yang SN, Wu SN, Tong B. 2022. Landslide susceptibility assessment considering spatial agglomeration and dispersion characteristics: A case study of Bijie City in Guizhou Province, China. ISPRS International Journal of Geo-Information, 11(5), 269. doi: 10.3390/ijgi11050269.

[73]

Youssef AM, Pourghasemi HR. 2021. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geoscience Frontiers, 12(2), 639-655. doi: 10.1016/j.gsf.2020.05.010.

[74]

Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5), 839-856. doi: 10.1007/s10346-015-0614-1.

[75]

Yuan R, Chen J. 2022. A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data. Natural Hazards, 114(2), 1393-1426. doi: 10.1007/s11069-022-05430-8.

[76]

Yuan XY, Liu C, Nie RH, Yang ZL, Li WL, Dai XA, Cheng JY, Zhang JM, Ma L, Fu X, Tang M, Xu YN, Lu H. 2022. A comparative analysis of certainty factor-based machine learning methods for collapse and landslide susceptibility mapping in Wenchuan County, China. Remote Sensing, 14(14), 3259. doi: 10.3390/rs14143259.

[77]

Zeng TR, Wu LY, Peduto D, Glade T, Hayakawa YS, Yin KL. 2023. Ensemble learning framework for landslide susceptibility mapping: Different basic classifier and ensemble strategy. Geoscience Frontiers, 14(6), 101645. doi: 10.1016/j.gsf.2023.101645.

[78]

Zhang JY, Ma XL, Zhang JL, Sun DL, Zhou XZ, Mi CL, Wen HJ. 2023. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. Journal of Environmental Management, 332, 117357. doi: 10.1016/j.jenvman.2023.117357.

[79]

Zhao Z, Liu ZY, Xu C. 2021. Slope unit-based landslide susceptibility mapping using certainty factor, support vector machine, random forest, CF-SVM and CF-RF models. Frontiers in Earth Science, 9, 589630. doi: 10.3389/feart.2021.589630.

[80]

Zhou C, Cao Y, Hu X, Yin KL, Wang Y, Catani F. 2022. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area. Landslides, 19(7), 1585-1597. doi: 10.1007/s10346-021-01796-1.

[81]

Zhou XZ, Wen HJ, Li ZW, Zhang H, Zhang WG. 2022. An interpretable model for the susceptibility of rainfall-induced shallow landslides based on SHAP and XGBoost. Geocarto International, 37(26), 13419-13450. doi: 10.1080/10106049.2022.2076928.

[82]

Zhu AX, Miao YM, Yang L, Bai SB, Liu JZ, Hong HY. 2018. Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping. Catena, 171, 222-233. doi: 10.1016/j.catena.2018.07.012.

AI Summary AI Mindmap
PDF (3214KB)

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/