Investigation on the fracture propagation for horizontal wells in hydrate reservoirs using a fluid-solid coupling discrete element method

Jia-wei Zhang , Chang-ling Liu , Yong-chao Zhang , Le-le Liu , Yun-kai Ji

China Geology ›› 2025, Vol. 8 ›› Issue (4) : 765 -778.

PDF (8794KB)
China Geology ›› 2025, Vol. 8 ›› Issue (4) :765 -778. DOI: 10.31035/cg2024031
Original Articles
research-article

Investigation on the fracture propagation for horizontal wells in hydrate reservoirs using a fluid-solid coupling discrete element method

Author information +
History +
PDF (8794KB)

Abstract

Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources, however, its application to gas hydrate reservoirs has been rarely studied. Currently, there is still limited understanding of the propagation and extension of fractures around the wellbore during the fracturing process of horizontal wells in hydrate reservoirs, as well as the stress interference patterns between fractures. This study simulates hydraulic fracturing processes in hydrate reservoirs using a fluid-solid coupling discrete element method (DEM), and analyzes the impacts of hydrate saturation and geological and engineering factors on fracture extension and stress disturbance. The results show that hydraulic fracturing is more effective when hydrate saturation exceeds 30% and that fracture pressure increases with saturation. The increase in horizontal stress differential enhances the directionality of fracture propagation and reduces stress disturbance. The distribution uniformity index (DUI) reveals that injection pressure is directly proportional to the number of main fractures and inversely proportional to fracturing time, with fracturing efficiency depending on the spacing between injection points and the distance between wells. This work may provide reference for the commercial exploitation of natural gas hydrates.

Keywords

Hydraulic fracturing technology / Gas hydrate reservoirs / Hydrate-bearing sediment / Discrete element method / Fluid-solid coupling / Hydraulic fracturing / Horizontal wells / Fracture propagation / Oil-gas exploration engineering

Cite this article

Download citation ▾
Jia-wei Zhang, Chang-ling Liu, Yong-chao Zhang, Le-le Liu, Yun-kai Ji. Investigation on the fracture propagation for horizontal wells in hydrate reservoirs using a fluid-solid coupling discrete element method. China Geology, 2025, 8(4): 765-778 DOI:10.31035/cg2024031

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jia-Wei Zhang, Chang-Ling Liu and Yong-Chao Zhang conceived of the presented idea. Jia-Wei Zhang and YongChao Zhang carried out the experiment. All authors discussed the results and contributed to the final manuscript.

Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgements

This study was financially supported by the National Key Research and Development Plan (2023YFC2811001), the National Natural Science Foundation of China (42206233), and the Taishan Scholars Program (tsqn202312280, tsqn202306297). All financial supports are greatly appreciated.

References

[1]

Blunt MJ, Jackson MD, Piri M, Valvatne PH. 2002. Detailed physics, predictive capabilities and macroscopic consequences for porenetwork models of multiphase flow. Advances in Water Resources, 25, 1069-1089. doi: 10.1016/s0309-1708(02)00049-0.

[2]

Chen C, Yang L, Jia R, Sun YH, Guo W. 2000. Simulation study on the effect of fracturing technology on the production efficiency of natural gas hydrate. Energies, 10(8), 1241. doi: 10.3390/en10081241.

[3]

Chen XJ, Lu HL, Gu LJ, Shang SL, Zhang Y, Huang X, Zhang L. 2022. Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation. Energy, 243, 123007. doi: 10.1016/j.energy.2021.123007.

[4]

Chen MT, Li YL, Zhang YJ, Qi MH, Wu NW. 2023a. Recent advances in creep behaviors characterization for hydrate-bearing sediment. Renewable and Sustainable Energy Reviews, 183, 113434. doi: 10.1016/j.rser.2023.113434.

[5]

Chen MT, Li YL, Zhang PH, Yu GG, Zhang Z, Zhang YJ, Wu NY. 2023b. Numerical simulation of failure properties of interbedded hydrate-bearing sediment and their implications on field exploitation. Ocean Engineering, 274, 114030. doi: 10.1016/j.oceaneng.2023.114030.

[6]

Deng SC, Li HB, Ma GW, Huang H, Li X. 2014. Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method. International Journal of Rock Mechanics and Mining Sciences, 70, 219-228. doi: 10.1016/j.ijrmms.2014.04.011.

[7]

Duan K, Li YC, Yang WD. 2021. Discrete element method simulation of the growth and efficiency of multiple hydraulic fractures simultaneously-induced from two horizontal wells. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7, 1-20. doi: 10.1007/s40948-020-00196-4.

[8]

Ding YL, Qian AN, Lu HL. 2022. Influences of hydrate morphology and hydrate distribution heterogeneity on the mechanical properties of hydrate-bearing sediments using the discrete element method. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(3), 106. doi: 10.1007/s40948-022-00410-5.

[9]

Dong L, Liu XQ, Gong B, Li YL. 2024. Geomechanical properties of hydrate-bearing strata and their applications. Advances in GeoEnergy Research, 11(3), 161-167. doi: 10.46690/ager.2024.03.01.

[10]

Feng YC, Chen L, Suzuki A, Kogawa T, Okajima J, Komiya A, Maruyama S. 2019. Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method. Energy Conversion and Management, 184(1), 194-204. doi: 10.1016/j.enconman.2019.01.050.

[11]

Gu XQ, Huang MS, Qian JG. 2014. DEM investigation on the evolution of microstructure in granular soils under shearing. Granular Matter, 16(1), 91-106. doi: 10.1007/s10035-013-0467-z.

[12]

Hyodo M, Wu Y, Nakashima K, Kajiyama S, Nakata Y. 2017. Influence of fines content on the mechanical behavior of methane hydratebearing sediments. Journal of Geophysical Research. Solid Earth, 122(10), 7511-7524. doi: 10.1002/2017jb014154.

[13]

Ishida MT. 2011. The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. International Journal of Rock Mechanics and Mining Sciences, 48(5), 712-727. doi: 10.1016/j.ijrmms.2011.04.013.

[14]

Jung JW, Santamarina JC. 2011. Hydrate adhesive and tensile strengths. Geochemistry, Geophysics, Geosystems, 12(8), Q08003-Q08011. doi: 10.1029/2010gc003495.

[15]

Konno Y, Jin Y, Yoneda J, Uchiumi T, Shinjou K, Nagao J. 2016. Hydraulic fracturing in methane-hydrate-bearing sand. RSC Advances, 6(77), 73148-73155. doi: 10.1039/c6ra15520k.

[16]

Lei Q, Xu Y, Cai B, Guan BS, Wang X, Bi GQ, Li H, Li S, Ding B, Fu HF, Tong Z, Li T, Zhang H. 2022. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs. Petroleum Exploration and Development, 49(1), 191-199. doi: 10.1016/s1876-3804(22)60015-6.

[17]

Li FG, Yuan Q, Li TD, Li Z, Sun CY, Chen GJ. 2019. A review: enhanced recovery of natural gas hydrate reservoirs. Chinese Journal of Chemical Engineering, 27(9), 2062-2073. doi: 10.1016/j.cjche.2018.11.007.

[18]

Li JF, Ye JL, Qin XW, Qiu HJ, Wu NY, Lu HL, Xie WW, Lu JA, Peng F, Xu ZQ, Lu C, Kuang ZG, Wei JQ, Liang QY, Lu HF, Kou BB. 2018. The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1), 5-16. doi: 10.31035/cg2018003.

[19]

Li YH, Wu P, Sun X, Liu WG, Song YC. 2021. Mechanical behaviors of hydrate-bearing sediment with different cementation spatial distributions at microscales. iScience, 24(5), 102448. doi: 10.1016/j.isci.2021.102448.

[20]

Li ZF, Chow JK, Li JH, Tai P, Zhou ZS. 2022. Modeling of flexible membrane boundary using discrete element method for drained/undrained triaxial test. Computers and Geotechnics, 145, 104687. doi: 10.1016/j.compgeo.2022.104687.

[21]

Li B, Shen YF, Sun YF, Qi Y, Shan HF, Zhang GB. 2024a. Assessing hydraulic fracturing feasibility in marine hydrate reservoirs: Impact of closure pressure and hydrate decomposition on fracture conductivity. Ocean Engineering, 309, 118569. doi: 10.1016/j.oceaneng.2024.118569.

[22]

Li XY, Wang Y, Li XS, Zhou SD, Liu Y, Lv XF. 2024b. Study on the production of gas hydrates and underlying free gas by horizontal well under different directions of hydraulic fracturing. Energy, 290, 130199. doi: 10.1016/j.energy.2023.130199.

[23]

Liao SZ, Hu JH, Zhang Y. 2022. Investigation on the influence of multiple fracture interference on hydraulic fracture propagation in tight reservoirs. Journal of Petroleum Science and Engineering, 211, 110160. doi: 10.1016/j.petrol.2022.110160.

[24]

Liu XQ, Zhang WD, Qu ZQ, Guo TK, Sun Y, Rabiei M, Cao QY. 2020. Feasibility evaluation of hydraulic fracturing in hydrate-bearing sediments based on analytic hierarchy process-entropy method (AHP-EM). Gas Science and Engineering, 81, 103434. doi: 10.1016/j.jngse.2020.103434.

[25]

Liu Y, Li G, Chen J, Bai Y, Hou J, Xu H, Zhao E, Chen Z, He J, Zhang L. 2023. Numerical simulation of hydraulic fracturing-assisted depressurization development in hydrate bearing layers based on discrete fracture models. Energy, 263, 126146. doi: 10.1016/j.energy.2022.126146.

[26]

Liu H, Lu HL, Zhang KN. 2023. Embedded discrete fracture model for investigating the effect of fractures on gas hydrate production. Energy and Fuels, 37(20), 15768-15783. doi: 10.1021/acs.energyfuels.3c02819.

[27]

Ma KL, Li DL, Liang DQ. 2023. Reservoir stimulation technologies for natural gas hydrate: research progress, challenges, and perspectives. Energy and Fuels, 37(4), 10112-10133. doi: 10.1021/acs.energyfuels.3c01464.

[28]

Peng PH, Ju Y, Wang YL, Wang SQ, Gao F. 2017. Numerical analysis of the effect of natural microcracks on the supercritical CO 2 fracturing crack network of shale rock based on bonded particle models. International Journal for Numerical and Analytical Methods in Geomechanics, 41(18), 1992-2013. doi: 10.1002/nag.2712.

[29]

Ruppel CD, Kessler JD. 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics, 55(1), 126-168. doi: 10.1002/2016rg000534.

[30]

Su PB, Wei W, Sun YB, YY, Cheng H, Han WF, Zhang W, Liang JQ. 2024. Geological reservoir and resource potential (1013 m3) of gas hydrates in the South China Sea. China Geology, 7(3), 422-444. doi: 10.31035/cg2024069.

[31]

Shaibu R, Sambo C, Guo B, Dudun A. 2021. An assessment of methane gas production from natural gas hydrates: Challenges, technology and market outlook. Advances in Geo-Energy Research, 5(3), 318-332. doi: 10.46690/ager.2021.03.07.

[32]

Sun CY, Li WZ, Yang X, Li FG, Yuan Q, Mu L, Chen J, Liu B, Chen GJ. 2011. Progress in Research of Gas Hydrate. Chinese journal of chemical Engineering, 19(1), 151-162. doi: 10.1016/S1004- 9541 (09)60192-0.

[33]

Sun JX, Ning FL, Liu TL, Liu CL, Chen Q, Li YL, Cao XX, Mao PX, Zhang L, Jiang GS. 2019. Gas production from a silty hydrate reservoir in the South China Sea using hydraulic fracturing: A numerical simulation. Energy Science and Engineering, 7(4), 1106-1122. doi: 10.1002/ese3.353.

[34]

Tavarez FA, Plesha ME. 2007. Discrete element method for modelling solid and particulate materials. International Journal for Numerical Methods in Engineering, 70(4), 379-404. doi: 10.1002/nme.1881.

[35]

Too JL, Cheng A, Khoo BC, Palmer A, Linga P. 2018. Hydraulic fracturing in a penny-shaped crack. Part II: Testing the frackability of methane hydrate-bearing sand. Gas Science and Engineering, 52, 619-628. doi: 10.1016/j.jngse.2018.01.046.

[36]

Wang ZY, Liao YQ, Zhang WD, Sun BJ, Sun XH, Deng XJ. 2018. Coupled temperature field model of gas-hydrate formation for thermal fluid fracturing. Applied Thermal Engineering, 133, 160-169. doi: 10.1016/j.applthermaleng.2018.01.039.

[37]

Wu P, Li YH, Sun X, Liu WW, Song Y. 2020. Mechanical characteristics of hydrate-bearing sediment: a review. Energy and Fuels, 35(2), 1041-1057. doi: 10.1021/acs.energyfuels.0c03995.

[38]

Wei RC, Liu LL, Jia C, Dong X, Bu QT, Zhang YC, Liu CL, Wu NY. 2023. Undrained triaxial shear tests on hydrate-bearing fine-grained sediments from the shenhu area of south china sea. Journal of Marine Science and Engineering, 11(1604), 1604. doi: 10.3390/jmse11081604.

[39]

Xu JC, Qin HT, Li HY, Lu C, Li SX, Wu DD. 2023. Enhanced gas production efficiency of class 1,2,3 hydrate reservoirs using hydraulic fracturing technique. Energy, 263, 126003. doi: 10.1016/j.energy.2022.126003.

[40]

Yao YX, Guo ZH, Zeng JM, Li DL, Lu JL, Liang DQ, Jiang MJ. 2021. Discrete element analysis of hydraulic fracturing of methane hydratebearing sediments. Energy and Fuels, 35(8), 6644-6657. doi: 10.1021/acs.energyfuels.1c00248.

[41]

Ye JL, Qin XW, Xie WW, Lu HL, Ma BJ, Qiu HJ, Liang JQ, Lu JA, Kuang ZG, Lu C, Liang QY, Wei SP, Yu YJ, Liu CS, Li B, Shen KX, Shi HX, Lu QP, Li J, Kou BB, Song G, Li B, Zhang HE, Lu HF, Ma C, Dong YF, Bian H. 2020. The second natural gas hydrate production test in the South China Sea. China Geology, 3(2), 197-209. doi: 10.31035/cg2020043.

[42]

Yu T, Guan GQ, Wang DY, Song YC, Abudula A. 2021. Gas production enhancement from a multilayered hydrate reservoir in the South China Sea by hydraulic fracturing. Energy and Fuels, 35(15), 12104-12118. doi: 10.1021/acs.energyfuels.1c01785.

[43]

Zhao JZ, Ren L, Shen C, Li YM. 2018. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs. Natural Gas Industry B, 5(5), 533-546. doi: 10.1016/j.ngib.2018.03.007.

[44]

Zhao XP, Paul YR. 2011. Numerical modeling of seismicity induced by fluid injection in naturally fractured reservoirs. Geophysics, 76(6), WC167-WC180. doi: 10.1190/geo2011-0025.1.

[45]

Zhou J, Jin Y, Chen M. 2010. Experimental investigation of hydraulic fracturing in random naturally fractured blocks. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1193-1199. doi: 10.1016/j.ijrmms.2010.07.005.

[46]

Zhou J, Zhang LQ, Pan ZJ, Han ZH. 2016. Numerical investigation of fluid-driven near-borehole fracture propagation in laminated reservoir rock using PFC2D. Gas Science and Engineering, 36, 719-733. doi: 10.1016/j.jngse.2016.11.010.

[47]

Zhang YC, Liu LL, Hu GW, Bu QT, Li CF, Zhang ZC. 2022. Formation mechanism, experimental method, and property characterization of grain-displacing methane hydrate in marine sediment: A review. China Geology, 5(2), 345-354. doi: 10.31035/cg2022014.

[48]

Zhang Z, Li CF, Ning FL, Liu LL, Cai JC, Liu CL, Wu NY, Wang DG. 2020. Pore fractal characteristics of hydrate-bearing sands and implications to the saturated water permeability. Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018721. doi: 10.1029/2019jb018721.

[49]

Zhang Z, Liu LL, Lu WJ, Liu CL, Ning FL, Dai S. 2023. Permeability of hydrate-bearing fine-grained sediments: Research status, challenges and perspectives. Earth-Science Reviews, 244, 104517. doi: 10.1016/j.earscirev.2023.104517.

AI Summary AI Mindmap
PDF (8794KB)

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/