Organic geochemistry and basin modeling of the Eocene Mangahewa source rock system in the Pohokura oilfield, Taranaki Basin (New Zealand) and their indication of oil and gas potential

Talha S.M. Qadri , Mohammed Hail Hakimi , Mahdi Ali Lathbl , Aref Lashin , Mohammed Almobarky , Afikah Rahim

China Geology ›› 2025, Vol. 8 ›› Issue (4) : 725 -739.

PDF (6806KB)
China Geology ›› 2025, Vol. 8 ›› Issue (4) :725 -739. DOI: 10.31035/cg2023137
Original Articles
research-article

Organic geochemistry and basin modeling of the Eocene Mangahewa source rock system in the Pohokura oilfield, Taranaki Basin (New Zealand) and their indication of oil and gas potential

Author information +
History +
PDF (6806KB)

Abstract

The importance of organic geochemistry and basin modeling is widely recognized and used to understand the source rock potential and hydrocarbon generation history of the Mangahewa Formation, and thereby given the foundational role in the petroleum exploration. This study utilized the total organic carbon (TOC) content and hydrogen index (HI) to investigate the dominant kerogen type and hydrogen richness for the significance of petroleum generative potential. The Mangahewa coals and carbonaceous shales exhibit an excellent source rocks, with high total organic content (TOC) of more than 22%. The coals and carbonaceous shales were also characterised by Type II-III kerogen with Type III kerogen, promising oiland gas-prones. The Mangahewa Formation reached the main oil generation, with vitrinite reflectances between 0.53% and 1.01%. Vitrinite reflectance was also used in developing themal models and reveal the transformation (TR) of 10-50% kerogen to oil during the Late Miocene. The models also showed that the Mangahewa source rock has a significant oil generation and little expulsion competency, with a TR of up to 54%. These findings support the substantial oil-generating potential in the Taranaki Basin's southern graben and can be used as a guide when developing strategies for an oil exploration program.

Keywords

Mangahewa Formation / Thermal cracking / Coal and carbonaceous shale / Source rock system / Oil generation modeling / Pohokura oilfield / New Zealand

Cite this article

Download citation ▾
Talha S.M. Qadri, Mohammed Hail Hakimi, Mahdi Ali Lathbl, Aref Lashin, Mohammed Almobarky, Afikah Rahim. Organic geochemistry and basin modeling of the Eocene Mangahewa source rock system in the Pohokura oilfield, Taranaki Basin (New Zealand) and their indication of oil and gas potential. China Geology, 2025, 8(4): 725-739 DOI:10.31035/cg2023137

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Talha S.M. Qadria, Mohammed Hail Hakimi, Mahdi Ali Lathbl, Mohammed Almobarky and Aref Lashin conceived of the presented idea. Mohammed Hail Hakimi and Afikah Rahim created and interpreted the 1-D basin models. All authors discussed the results and contributed to the final manuscript.

Declaration of competing interest

The authors declare no conflicts of interest.

Acknowledgements

The first author would like to thank Ministry of Business, Innovation, and Employment (MBIE), New Zealand, and GNS Science for providing the dataset for the research. The fourth author (Aref Lashin) is grateful to the Researchers Supporting Project number (RSP2025R92) at King Saud University, Riyadh, Saudi Arabia, for their support.

References

[1]

Abdullah WH, Hakimi MH, el-Forjani Shushan L, Abdul Rahman AH. 2017. Petroleum source rock characteristics of marine versus coastal settings: A comparative study between madbi formation of masila basin, Yemen and nyalau formation of Sarawak, Malaysia. Bulletin of the Geological Society of Malaysia, 63, 103-115. doi: 10.7186/bgsm63201705.

[2]

Abeed Q, Littke R, Strozyk F, Uffmann AK. 2013. The Upper Jurassic-cretaceous petroleum system of southern Iraq: A 3-D basin modelling study. GeoArabia, 18(1), 179-200. doi: 10.2113/geoarabia1801179.

[3]

Allen PA, Allen TR. 1990. Basin Analysis: Principles and Applications. Oxford, Blackwell Scientific publications, 560.

[4]

Bordenave ML, Espitalié J, Leplat POJL, Oudin JL, Vandenbroucke M. 1993. Screening techniques for source rock evaluation. In: Bordenove, M. L., Ed., Applied Petroleum Geochemistry, Editions Technip,Paris,217-278.

[5]

Botor D, Bábek O. 2019. Burial and thermal history modelling of the Upper Carboniferous strata based on vitrinite refl ectance data from Bzie-Dębina-60 borehole (Upper Silesian Coal Basin, southern Poland). Geologické Výzkumy Na Moravě a Ve Slezsku, 26(1-2). doi: 10.5817/gvms2019-1-2-73

[6]

Bryndzia LT, Braunsdorf NR. 2014. From source rock to reservoir: The evolution of self-sourced unconventional resource plays. Elements, 10(4), 271-276. doi: 10.2113/gselements.10.4.271.

[7]

Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A. 1977. Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d'évolution. Revue de L'Institut Franç ais Du Pétrole, 32(1), 23-42. doi: 10.2516/ogst:1977002.doi:10.2516/ogst:1977002.

[8]

Hadad YT, Hakimi MH, Abdullah WH, Makeen YM. 2017. Basin modeling of the late Miocene zeit source rock in the sudanese portion of red sea basin: Implication for hydrocarbon generation and expulsion history. Marine and Petroleum Geology, 84, 311-322. doi: 10.1016/j.marpetgeo.2017.04.002.

[9]

Hakimi MH, Abdullah WH. 2015. Thermal maturity history and petroleum generation modelling for the Upper Jurassic Madbi source rocks in the Marib-Shabowah Basin, western Yemen. Marine and Petroleum Geology, 59, 202-216. doi: 10.1016/j.marpetgeo.2014.08.002.

[10]

Hakimi MH, Abdulah WH, Shalaby MR. 2010. Organic geochemistry, burial history and hydrocarbon generation modelling of the Upper Jurassic madbi formation, masila basin, Yemen. Journal of Petroleum Geology, 33(4), 299-318. doi: 10.1111/j.1747-5457.2010.00481.x.

[11]

Hakimi MH, Abdullah WH, Sia SG, Makeen YM. 2013. Organic geochemical and petrographic characteristics of tertiary coals in the northwest Sarawak, Malaysia: Implications for palaeoenvironmental conditions and hydrocarbon generation potential. Marine and Petroleum Geology, 48, 31-46. doi: 10.1016/j.marpetgeo.2013.07.009.

[12]

Hakimi MH, Abdullah WH, Alias FL, Azhar MH, Makeen YM. 2013. Organic petrographic characteristics of Tertiary (Oligocene-Miocene) coals from eastern Malaysia: Rank and evidence for petroleum generation. International Journal of Coal Geology, 120, 71-81. doi: 10.1016/j.coal.2013.10.003.

[13]

Hakimi MH, Kumar A, Singh AK, Lashin A, Rahim A, Varfolomeev MA, Yelwa NA, Mustapha KA. 2023. Geochemistry and organic petrology of the bituminite shales from the kapurdi mine, Rajasthan of NW India: Implications for waxy oil generation potential. Journal of Petroleum Exploration and Production Technology, 13(2), 505-521. doi: 10.1007/s13202-022-01597-9.

[14]

Hazra B, Katz BJ, Singh DP, Singh PK. 2022. Impact of siderite on rockeval S3 and oxygen index. Marine and Petroleum Geology, 143, 105804. doi: 10.1016/j.marpetgeo.2022.105804.

[15]

He S, Middleton M. 2002. Heat flow and thermal maturity modelling in the Northern Carnarvon Basin, North West Shelf, Australia. Marine and Petroleum Geology, 19(9), 1073-1088. doi: 10.1016/S0264-8172(03)00003-5.

[16]

Jumat N, Shalaby MR, Haque AE, Islam MA, Lee Hoon L. 2018. Geochemical characteristics, depositional environment and hydrocarbon generation modeling of the Upper Cretaceous Pakawau group in Taranaki Basin, New Zealand. Journal of Petroleum Science and Engineering, 163, 320-339. doi: 10.1016/j.petrol.2017.12.088.

[17]

Kamp P, Tripathi A, Nelson CS. 2014. Paleogeography of late Eocene to earliest Miocene Te kuiti group, central-western north island, new zealand. New Zealand Journal of Geology and Geophysics, 57(2), 128-148. doi: 10.1080/00288306.2014.904384.

[18]

King PR, Thrasher GP. 1996. Cretaceous-Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand. Institute of Geological and Nuclear Sciences Monograph, 13, X-191.

[19]

Kumar A, Singh AK, Paul D, Kumar A. 2020. Evaluation of hydrocarbon potential with insight into climate and environment present during deposition of the Sonari lignite, Barmer Basin Rajasthan. Energy and Climate Change, 1, 100006. doi: 10.1016/j.egycc.2020.100006.

[20]

Lachenbruch AH. 1970. Crustal temperature and heat production: Implications of the linear heat-flow relation. Journal of Geophysical Research, 75(17), 3291-3300. doi: 10.1029/jb075i017p03291.

[21]

Lathbl MA, Haque AE, Hakimi MH, Lashin A, Talha Qadri SM. 2024. Organic geochemical characteristics of the Late Cretaceous coal and carbonaceous shale succession from the Taranaki Basin, new zealand: Implications for sedimentary environmental setting and petroleum generation potential. Geological Journal, 59(6), 17031723. doi: 10.1002/gj.4962.

[22]

Makeen YM, Abdullah WH, Pearson MJ, Hakimi MH, Elhassan OMA, Hadad YT. 2016. Thermal maturity history and petroleum generation modelling for the Lower Cretaceous Abu Gabra Formation in the Fula Sub-basin, Muglad Basin, Sudan. Marine and Petroleum Geology, 75, 310-324. doi: 10.1016/j.marpetgeo.2016.04.023.

[23]

Makeen YM, Abdullah WH, Abdul Ghofur MN, Ayinla HA, Hakimi MH, Shan X, Mustapha KA, Kamal Shuib M, Liang Y, Zainal Abidin NS. 2019. Hydrocarbon generation potential of Oligocene oil shale deposit at onshore penyu basin, chenor, Pahang, Malaysia. Energy & Fuels, 33(1), 89-105. doi: 10.1021/acs.energyfuels.8b03164.

[24]

Makeen YM, Hakimi MH, Abdullah WH, Mustapha KA, Amir Hassan MH, Shushan IE, Garba TE, Ahmad Abujaish Y, Lashin AA. 2020. Basin modelling and bulk kinetics of heterogeneous organic-rich Nyalau Formation sediments of the Sarawak Basin, Malaysia. Journal of Petroleum Science and Engineering, 195, 107595. doi: 10.1016/j.petrol.2020.107595.

[25]

Martin Julian C, Baker Ken R. 1994. Diagenesis and reservoir quality of Paleocene sandstones in the kupe south field, Taranaki Basin, new zealand. AAPG Bulletin, 78. doi: 10.1306/bdff9276-171811d78645000102c1865d.

[26]

Mohamed AY, Whiteman AJ, Archer SG, Bowden SA. 2016. Thermal modelling of the melut Basin Sudan and South Sudan: Implications for hydrocarbon generation and migration. Marine and Petroleum Geology, 77, 746-762. doi: 10.1016/j.marpetgeo.2016.07.007.

[27]

O'Neill SR, Jones SJ, Kamp PJJ, Swarbrick RE, Gluyas JG. 2018. Pore pressure and reservoir quality evolution in the deep Taranaki Basin, New Zealand. Marine and Petroleum Geology, 98, 815-835. doi: 10.1016/j.marpetgeo.2018.08.038.

[28]

Osli LN, Shalaby MR, Islam MA, Kalaitzidis S, Damoulianou ME, Karim KNPD, Tsikouras B, Pasadakis N. 2022. Organic matter characteristics and hydrocarbon generating potential of the Miocene Belait Formation, Brunei-Muara district, Brunei Darussalam. Journal of Petroleum Science and Engineering, 208, 109503. doi: 10.1016/j.petrol.2021.109503.

[29]

Peters KE, Cassa MR, Magoon LB, Dow WG. 1994. Applied source rock geochemistry. The Petroleum System-From Source to Trap. American Association of Petroleum Geologists, 93-120. doi: 10.1306/m60585c5.

[30]

Qadri SMT, Islam MA, Shalaby MR, Eahsan ul Haque AKM. 2017. Seismic interpretation and structural modelling of Kupe field, Taranaki Basin, New Zealand. Arabian Journal of Geosciences, 10(14), 295. doi: 10.1007/s12517-017-3078-x.

[31]

Shalaby MR, Hakimi MH, Abdullah WH. 2013. Modeling of gas generation from the Alam El-Bueib formation in the Shoushan Basin, northern Western Desert of Egypt. International Journal of Earth Sciences, 102(1), 319-332. doi: 10.1007/s00531-012-0793-0.

[32]

Shalaby MR, Jumat N, Lai D, Malik O. 2019. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: Case study from the Jurassic source rocks in shams field, NW desert, Egypt. Journal of Petroleum Science and Engineering, 176, 369-380. doi: 10.1016/j.petrol.2019.01.055.

[33]

Singh AK, Kumar A. 2020. Assessment of thermal maturity, source rock potential and paleodepositional environment of the Paleogene lignites in barsingsar, Bikaner-nagaur Basin, western Rajasthan, India. Natural Resources Research, 29(2), 1283-1305. doi: 10.1007/s11053-019-09502-8.

[34]

Singh AK, Hakimi MH, Kumar A, Ahmed A, Abidin NSZ, Kinawy M, El Mahdy O, Lashin A. 2020. Geochemical and organic petrographic characteristics of high bituminous shales from Gurha mine in Rajasthan, NW India. Scientific Reports, 10, 22108. doi: 10.1038/s41598-020-78906-x.

[35]

Stagpoole V, Nicol A. 2008. Regional structure and kinematic history of a large subduction back thrust: Taranaki fault, new zealand. Journal of Geophysical Research: Solid Earth, 113(B1). doi: 10.1029/2007jb005170.

[36]

Sykes R, Volk H, George SC, Ahmed M, Higgs KE, Johansen PE, Snowdon LR. 2014. Marine influence helps preserve the oil potential of coaly source rocks: Eocene mangahewa formation, Taranaki Basin, new zealand. Organic Geochemistry, 66, 140-163. doi: 10.1016/j.orggeochem.2013.11.005.

[37]

Sweeney JJ, Burnha AK, 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1). AAPG Bulletin, 74, 1559-1570. doi: 10.1306/0c9b251f-1710-11d7-8645000102c1865d.

[38]

Talha Qadri SM, Islam MA, Shalaby MR. 2019. Three-dimensional petrophysical modelling and volumetric analysis to model the reservoir potential of the kupe field, Taranaki Basin, new zealand. Natural Resources Research, 28(2), 369-392. doi: 10.1007/s11053-018-9394-3.

[39]

Talha Qadri SM, Islam MA, Shalaby MR, Ali SH. 2021. Integration of 1D and 3D modeling schemes to establish the Farewell Formation as a self-sourced reservoir in Kupe Field, Taranaki Basin, New Zealand. Frontiers of Earth Science, 15(3), 631-648. doi: 10.1007/s11707-020-0839-8.

[40]

Talha Qadri SM, Shalaby MR, Islam MA, Hoon LL. 2016. Source rock characterization and hydrocarbon generation modeling of the Middle to Late Eocene Mangahewa Formation in Taranaki Basin, New Zealand. Arabian Journal of Geosciences, 9(10), 559. doi: 10.1007/s12517-016-2586-4.

[41]

Taylor GH, Davis A. C. F. K., Diessel C. F. K., Littke R., & Robert P. (1998). Organic petrology.

[42]

Waples DW. 1980. Time and temperature in petroleum formation: application of Lopatin's method to petroleum exploration. AAPG bulletin, 64(6), 916-926.

[43]

Wilkins RWT, George SC. 2002. Coal as a source rock for oil: A review. International Journal of Coal Geology, 50(1-4), 317-361. doi: 10.1016/S0166-5162(02)00134-9.

[44]

Zou CN. 2013. Shale gas, in:Unconventional Petroleum Geology, Elsevier, 149-190.

AI Summary AI Mindmap
PDF (6806KB)

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/