Electrification pathways for light-duty logistics vehicles based on perceived cost of ownership in Northern China
Xu Hao , Deyu Zhou , Ruiheng Zhong , Shunxi Li , Xianming Meng , Bo Liu
Carbon Footprints ›› 2024, Vol. 3 ›› Issue (3) : 15
Electrification pathways for light-duty logistics vehicles based on perceived cost of ownership in Northern China
Urban decarbonization and environmental mitigation necessitate the electrification of light-duty logistics vehicles (LDLVs), including battery electric, plug-in hybrid, and hydrogen fuel cell variants. Although the market uptake of electric LDLVs is ecologically imperative, it is impeded by range anxiety and charging infrastructure limitations, particularly pronounced in Northern China’s cold climates. This paper employs a system dynamics model to assess the Perceived Cost of Ownership of electric LDLVs, integrating both direct expenses - initial investment and energy costs - and indirect factors like energy replenishment, vehicle substitution, and lifecycle carbon emissions. This analysis reveals that, notwithstanding higher upfront costs, electric LDLVs offer substantial economic and environmental advantages, with significant energy and maintenance savings projected by 2030 under various electrification scenarios. This paper predicts that policy incentives, electricity pricing, and technological progress will significantly influence the market dynamics and industry output of new energy vehicles in Northern China. Notably, the findings indicate that by 2030, electric LDLVs could achieve substantial cost savings and environmental benefits, with market penetration and industry output contingent on the interplay of policy support and technological advancements. The baseline scenario forecasts a 48.17% market share and CNY 60.015 billion in industry output, whereas the high-speed electrification scenario projects the most optimistic outcomes, with a 75.29% market share and CNY 306.087 billion in output.
Electrification of logistics vehicles / economic analysis / sustainable urban logistics / Northern China / climate impact / system dynamics model / perceived cost of ownership
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
de Oliveira WC, de Araújo SR, Rodrigues LF, de Freitas Almeida JF. Sustainable approach towards alternatives for the use of iron ore tailings in the construction sector using data envelopment analysis methodology. Waste Manag Res 2024;734242X231219632. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
International Energy Agency. Global EV outlook 2023. Paris: IEA; 2023. Available from: https://www.iea.org/reports/global-ev-outlook-2023 [Last accessed on 30 Oct 2024] |
| [43] |
Bloomberg New Energy Finance. Electric vehicle outlook 2024. Finance: Bloomberg; 2024. Available from: https://about.bnef.com/electric-vehicle-outlook/ [Last accessed on 30 Oct 2024] |
| [44] |
National Development and Reform Commission. The 14th five-year plan for national economic and social development of the people’s republic of China and the outline of long-term goals for 2035; 2021. Available from: https://www.ndrc.gov.cn/fggz/fzzlgh/gjfzgh/202103/t20210323_1270102.html [Last accessed on 30 Oct 2024] |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
/
| 〈 |
|
〉 |