The emission reduction potential and cost-effectiveness of low-GWP refrigerants in electric vehicle air conditionings

Anran Li , Binbin Yu , Yingjing Zhang , Hongsheng Ouyang , Zhikai Guo , Junye Shi , Jiangping Chen

Carbon Footprints ›› 2024, Vol. 3 ›› Issue (2) : 6

PDF
Carbon Footprints ›› 2024, Vol. 3 ›› Issue (2) :6 DOI: 10.20517/cf.2023.54
Original Article

The emission reduction potential and cost-effectiveness of low-GWP refrigerants in electric vehicle air conditionings

Author information +
History +
PDF

Abstract

Electric vehicles play a crucial role in the carbon neutrality transformation of urban transportation, provided that they are powered by electricity generated from renewable (rather than fossil-based) generation sources. However, the substantial indirect emissions from electric vehicle air conditioning energy consumption and the significant direct emissions from HFCs (hydrofluorocarbons) refrigerants pose considerable challenges. In order to identify low-GWP (global warming potential) refrigerants -such as R1234yf, R744, and R290 - that can effectively minimize carbon emissions while maintaining certain cost-effectiveness, this paper establishes the relevant life-cycle analysis and life-cycle cost analysis models for electric vehicle air conditioning. The results obtained show that, in 2022, the total carbon emissions of China’s automotive air conditioning fleet were approximately 162 million tons CO2-eq. The nationwide average carbon emissions ranking of various refrigerant heat pumps is R290 < R1234yf < R744 < R134a. The Net Present Value (NPV) of the life cycle cost for R134a electric vehicle heat pump is estimated to be around 11,500 yuan. Among the three low-GWP refrigerants, the life cycle cost of R290 is significantly lower than that of R134a under nationwide average conditions, while R744 exhibits the best life cycle performance in certain cold cities/regions.

Keywords

Low-GWP refrigerant / electric vehicle air conditionings / LCA / LCCA / carbon neutrality

Cite this article

Download citation ▾
Anran Li, Binbin Yu, Yingjing Zhang, Hongsheng Ouyang, Zhikai Guo, Junye Shi, Jiangping Chen. The emission reduction potential and cost-effectiveness of low-GWP refrigerants in electric vehicle air conditionings. Carbon Footprints, 2024, 3(2): 6 DOI:10.20517/cf.2023.54

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Direk M,Yigit KS. Experimental performance of an R134a automobile heat pump system coupled to the passenger compartment. In: world renewable energy congress - Sweden, 8-13 May 2011, Linköping, Sweden. Available from: https://www.researchgate.net/publication/269125615_Experimental_Performance_of_an_R134a_Automobile_Heat_Pump_System_Coupled_to_the_Passenger_Compartment [Last accessed on 20 Feb 2024].

[2]

Hu ZL,Yang F.Development trends of thermal management technology for electric vehicles based on vehicle energy management.Autom Abstr2019;5:1Available from: https://g3mv.com/thesis/detail/1992705 [Last accessed on 20 Feb 2024].

[3]

Wu Q,Lin XY,Dou GY. International experience in greenhouse gas control of air conditioners for vehicles and its enlightenments. 2022. Available from: http://www.ceec.cn/zyzx/sjhjzz/zzlm/tszs/202302/P020230214520032932758.pdf [Last accessed on 20 Feb 2024]

[4]

Wang C,Li M,Song Y.Research status and future development of thermalmanagement system for new energy vehicles underthe background of carbon neutrality.Chin Sci Bull2021;66:4112-28

[5]

Golzari S,Daviran S,Wongwises S.Second law analysis of an automotive air conditioning system using HFO-1234yf, an environmentally friendly refrigerantAnalyse selon le second principe d'un système de conditionnement d'air automobile fonctionnant au HFO-1234yf, frigorigène respectueux de l'environnement.Int J Refrig2017;73:134-43

[6]

Liu YS,Zhang L,Chen JP.Performance of automotive ultra-low temperature economized vapor injection heat pump air conditioning using r1234yf refrigerant.J Shanghai Jiao Tong Univ2020;54:1108-16

[7]

Wang D,Hu J,Shi J.Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate. Caractéristiques des performances de chauffage d’un système de pompe à chaleur au CO2 pour un véhicule électrique dans un climat froid.Int J Refrig2018;85:27-41

[8]

Baek C,Jung J,Kim Y.Optimal control of the gas-cooler pressure of a CO2 heat pump using EEV opening and outdoor fan speed in the cooling mode. Régulation optimale de la pression du refroidisseur de gaz d'une pompe à chaleur au CO2 à l'aide de l'ouverture du détendeur électronique et de la vitesse du ventilateur externe, en mode refroidissement.Int J Refrig2013;36:1276-84

[9]

Ghodbane M.An investigation of R152a and hydrocarbon refrigerants in mobile air conditioning. In: international congress and exposition, SAE technical paper 1999-01-0874. 1999.

[10]

Ghodbane M,Baker JA. Demonstration of an energy-efficient secondary loop HFC-152a mobile air conditioning system. 2007. Available from: https://www.researchgate.net/profile/Timothy-Craig-3/publication/237297660_Demonstration_of_an_Energy-Efficient_Secondary_Loop_HFC152a_Mobile_Air_Conditioning_System/links/5554b2c808ae980ca60acf5a/Demonstration-of-an-Energy-Efficient-Secondary-Loop-HFC152a-Mobile-Air-Conditioning-System.pdf [Last accessed on 20 Feb 2024].

[11]

Li G,Lee H,Radermacher R.Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants.Energy2014;68:819-31

[12]

Hafner A. Global environmental consequences of introducing R-744 (CO2) mobile air conditioning. In: 7th IIR gustav lorentzen conference on natural working fluids. 2006. Available from: https://archive.r744.com/files/pdf_233.pdf [Last accessed on 20 Feb 2024]

[13]

Koban M. HFO-1234yf low GWP refrigerant LCCP analysis 2009-01-0179. In: SAE world congress & exhibition, SAE technical paper, 2009. Available from: https://www.sae.org/publications/technical-papers/content/2009-01-0179/ [Last accessed on 20 Feb 2024].

[14]

Yu B,Wang D,Shi J.Life cycle climate performance (LCCP) evaluation model for electric vehicle heat pumps and emission reduction analysis of low-GWP refrigerants.Chin Sci Bull2023;68:841-52

[15]

Yue C,Huang Y.Thermal and economic analysis of an energy system of an ORC coupled with vehicle air conditioning. Analyse thermique et économique du système énergétique d'un cycle organique de Rankine (ORC) couplé avec un système de conditionnement d'air de véhicule.Int J Refrig2016;64:152-67

[16]

China Automotive Technology Research Center. Research report on China’s low-carbon action plan for automobiles 2021[EB/OL]. Available from: https://www.digitalelite.cn/h-nd-1515.html?fromColId=30 [Last accessed on 20 Feb 2024].

[17]

Papasavva S,Andersen SO.GREEN-MAC-LCCP: a tool for assessing the life cycle climate performance of MAC systems.Environ Sci Technol2010;44:7666-72

[18]

Zhang Z,Zhang C.Climate control loads prediction of electric vehicles.Appl Therm Eng2017;110:1183-8

[19]

Li W,Liu Y,Shi J.Performance evaluation of R1234yf heat pump system for an electric vehicle in cold climate. Évaluation de la performance d’un système de pompe à chaleur au R1234yf pour un véhicule électrique en climat froid.Int J Refrig2020;115:117-25

[20]

Yu B,Shi J,Chen J.Experimental evaluation of cycle performance for new-developed refrigerants in the electric vehicle heat pump systems. Évaluation expérimentale de la performance du cycle pour les frigorigènes nouvellement mis au point dans les systèmes de pompe à chaleur des véhicules électriques.Int J Refrig2021;129:118-27

[21]

Wang D,Li W,Chen J.Heating performance evaluation of a CO2 heat pump system for an electrical vehicle at cold ambient temperatures.Appl Therm Eng2018;142:656-64

[22]

Yu B,Wang D,Guo Z.Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems.Appl Energy2019;239:1142-53

[23]

Yu B,Shi J,Chen J.Evaluation of low-GWP and mildly flammable mixtures as new alternatives for R410A in air-conditioning and heat pump system. Évaluation de mélanges à faible PRP et légèrement inflammables comme nouvelles alternatives au R410A dans les systèmes de conditionnement d’air et de pompes à chaleur.Int J Refrig2021;121:95-104

[24]

China Meteorological Bureau. China standard weather data for analyzing building thermal conditions. Beijing: China Building Industry Publishing House. 2005.

[25]

Xiaoxiong fuel consumption. 2017 annual mileage report of the car owners in Xiaoxiong fuel consumption. 2018. Available from: https://zhuanlan.zhihu.com/p/43119608 [Last accessed on 20 Feb 2024]

[26]

AutoNavi. 2018|Q1 traffic analysis report of major cities in China. Available from: http://cn-hangzhou.oss-pub.aliyun-inc.com/download-report/download/quarterly_report/18Q1/Traffic%20Analysis%20Report%202018Q1.pdf [Last accessed on 20 Feb 2024]

[27]

Xiang XY,Jiang PN.Scenario analysis of hydrofluorocarbons emission reduction in China's mobile air-conditioning sector.Adv Clim Chang Res2022;13:578-86

[28]

Peter T. Transport energy and CO2: moving towards sustainability. Paris: International Energy Agency. 2009. Available from: https://www.oecd.org/publications/transport-energy-and-co2-moving-towards-sustainability-9789264073173-en.htm [Last accessed on 20 Feb 2024]

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/