PDF
Abstract
Blue carbon ecosystems require conservation and restoration to maximize organic carbon (CORG) sequestration to ameliorate greenhouse gas emissions. Salt marshes, mangrove forests and seagrass meadows are all autotrophic and are considered blue carbon ecosystems. Macroalgae and tidal flats are currently not considered blue carbon habitats. Blue carbon ecosystems contribute globally to climate change mitigation and at local and national scales, especially in the provision of other ecosystem goods and services. Financial investment is constrained by large uncertainties in CORG dynamics and best practices in restoration, rehabilitation and conservation. Several key emerging perspectives include (1) the fact that groundwater discharge of dissolved carbon is a major pathway of blue carbon loss; (2) allochthonous CORG inputs are required to achieve ecosystem carbon mass balance; (3) blue carbon dynamics are enhanced by habitat connectivity and biotic activities; (4) CH4 and N2O emissions reduce blue carbon potential; (5) habitat destruction causes blue carbon stock losses, but variable gas emissions; (6) sediment blue carbon stocks are increasing at the poles; and (7) land-use and land-cover changes (LULCC) drive changes in blue carbon stocks and emissions. Further research is needed to clarify the applicability of these emerging perspectives.
Keywords
Blue carbon
/
carbon sequestration
/
coastal
/
ecosystem
/
mangrove
/
mangrove forest
/
organic carbon
/
salt marsh
/
seagrass
/
seagrass meadow
Cite this article
Download citation ▾
Daniel M. Alongi.
Current status and emerging perspectives of coastal blue carbon ecosystems.
Carbon Footprints, 2023, 2(3): 12 DOI:10.20517/cf.2023.04
| [1] |
Alongi DM. Blue carbon: coastal sequestration for climate change mitigation. Cham, Switzerland: Springer; 2018. pp. 1-8.
|
| [2] |
Crooks S,Trozler TG. Defining blue carbon: the emergence of a climate content for coastal carbon dynamics. In: Windham-Myers L, Crooks S, Troxler TG, editors. A blue carbon primer: the state of coastal wetland carbon science, practice, and policy. Boca Raton: CRC Press; 2019. pp. 1-8.3.
|
| [3] |
Nelleman C,Duarte CM. Blue carbon: a rapid response assessment. Arendal, Norway: UNEP; 2009. pp. 1-78.4.
|
| [4] |
Littles CJ,DeWitt TH.Linking people to coastal habitats: a meta-analysis of final ecosystem goods and services on the coast.Ocean Coast Manag2018;165:356-69 PMCID:PMC6541417
|
| [5] |
Sifleet S,Murray BC. State of the science on coastal blue carbon: a summary for policy makers. Nicholas Institute for Environmental Policy Solutions Report NI R 11-06. Durham, USA: Duke University; 2011. pp. 1-43.
|
| [6] |
Alongi DM.Carbon balance in salt marsh and mangrove ecosystems: a global synthesis.J Mar Sci Eng2020;8:767
|
| [7] |
Hill R,Macreadie PI.Can macroalgae contribute to blue carbon? An Australian perspective.Limnol Oceanogr2015;60:1689-706
|
| [8] |
Gao G,Jin P,Xie S.A review of existing and potential blue carbon contributions to climate change mitigation in the Anthropocene.J Appl Ecol2022;59:1686-99
|
| [9] |
Duarte CM,Hancke K.Global estimates of the extent and production of macroalgal forests.Global Ecol Biogeogr2022;31:1422-39
|
| [10] |
Carnell PE,Waryszak P,Masqué P.Blue carbon drawdown by restored mangrove forests improves with age.J Environ Manag2022;306:114301
|
| [11] |
Marchand C.Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana).For Ecol Manag2017;384:92-9
|
| [12] |
Monga E,Trettin CC.Impact of mangrove planting on forest biomass carbon and other structural attributes in the Rufiji Delta, Tanzania.Global Ecol Conserv2022;35:e02100
|
| [13] |
Thura K,Gu J.Mangrove restoration built soil organic carbon stocks over six decades: a chronosequence study.J Soil Sediment2023;23:1193-203
|
| [14] |
Azman M, Sharma S, Liyana Hamzah M, Mohamad Zakaria R, Palaniveloo K, Mackenzie RA. Total ecosystem blue carbon stocks and sequestration potential along a naturally regenerated mangrove forest chronosequence.For Ecol Manag2023;527:120611
|
| [15] |
Burden A,Evans CD.Effect of restoration on saltmarsh carbon accumulation in Eastern England.Biol Lett2019;15:20180773 PMCID:PMC6371915
|
| [16] |
Drexler JZ,Fuller CC.Carbon accumulation and vertical accretion in a restored versus historic salt marsh in southern Puget Sound, Washington, United States.Restor Ecol2019;27:1117-27
|
| [17] |
Wang C,Cai T.Variation of soil carbon and nitrogen storage in a natural restoration chronosequence of reclaimed temperate marshes.Global Ecol Conserv2021;27:e01589
|
| [18] |
Abbott KM,DeLaune RD.Factors influencing blue carbon accumulation across a 32-year chronosequence of created coastal marshes.Ecosphere2019;10:e02828
|
| [19] |
Dontis EE,Chappel AR,Moyer RP.Carbon storage increases with site age as created salt marshes transition to mangrove forests in Tampa Bay, Florida (USA).Estuar Coast2020;43:1470-88
|
| [20] |
Thorhaug A,López-Portillo J,Berlyn GP.Seagrass blue carbon dynamics in the Gulf of Mexico: stocks, losses from anthropogenic disturbance, and gains through seagrass restoration.Sci Total Environ2017;605-6:626-36
|
| [21] |
Greiner JT,Gunnell J.Seagrass restoration enhances "blue carbon" sequestration in coastal waters.PLoS One2013;8:e72469 PMCID:PMC3743776
|
| [22] |
Marbà N,Masqué P.Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks.J Ecol2015;103:296-302
|
| [23] |
Van Dam BR,Lopes C.Calcification-driven CO2 emissions exceed “blue carbon” sequestration in a carbonate seagrass meadow.Sci Adv2021;7:eabj1372
|
| [24] |
Smale D,Evans A.Linking environmental variables with regional- scale variability in ecological structure and standing stock of carbon within UK kelp forests.Mar Ecol Prog Ser2016;542:79-95
|
| [25] |
Krause-Jensen D,Serrano O,Masque P.Sequestration of macroalgal carbon: the elephant in the blue carbon room.Biol Lett2018;14:20180236 PMCID:PMC6030603
|
| [26] |
Watanabe K,Hori M,Moki H.Macroalgal metabolism and lateral carbon flows can create significant carbon sinks.Biogeosciences2020;17:2425-40
|
| [27] |
Mack SK,Holland K,Cole J.A blue carbon pilot project: lessons learned.Carbon Manag2022;13:420-34
|
| [28] |
Williams P.Salt marsh restoration experience in San Francisco Bay.J Coast Res2001;27:203-11Available from: https://www.researchgate.net/publication/267198245_Salt_Marsh_Restoration_Experience_in_San_Francisco_Bay [Last accessed on 19 July 2022]
|
| [29] |
Lewis RR.Ecological engineering for successful management and restoration of mangrove forests.Ecol Eng2005;24:403-18
|
| [30] |
Dencer-Brown AM,Friess D.Integrating blue: how do we make nationally determined contributions work for both blue carbon and local coastal communities?.Ambio2022;51:1978-93 PMCID:PMC9063623
|
| [31] |
Macreadie PI,Kelleway JJ.Can we manage coastal ecosystems to sequester more blue carbon?.Front Ecol Environ2017;15:206-13
|
| [32] |
Vanderklift MA,Lovelock CE,Raw JL.A guide to international climate mitigation policy and finance frameworks relevant to the protection and restoration of blue carbon ecosystems.Front Mar Sci2022;9:872064
|
| [33] |
Lovelock CE.Dimensions of blue carbon and emerging perspectives.Biol Lett2019;15:20180781 PMCID:PMC6451379
|
| [34] |
Duncan C,Hill NAO,Koldewey HJ.Potential for return on investment in rehabilitation-oriented blue carbon projects: accounting methodologies and project strategies.Front For Glob Chang2022;4:775341
|
| [35] |
Gallagher JB,Layton C.Seaweed ecosystems may not mitigate CO2 emissions.ICES J Mar Sci2022;79:585-92
|
| [36] |
Ricart AM,Hancke K,Masqué P.Sinking seaweed in the deep ocean for carbon neutrality is ahead of science and beyond the ethics.Environ Res Lett2022;17:081003
|
| [37] |
Trevathan-Tackett SM,Macreadie PI,Ralph P.Comparison of marine macrophytes for their contributions to blue carbon sequestration.Ecology2015;96:3043-57
|
| [38] |
Queirós AM,Widdicombe S.Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean.Ecol Monogr2019;89:e01366
|
| [39] |
Perkins AK,Rose AL.Production of dissolved carbon and alkalinity during macroalgal wrack degradation on beaches: a mesocosm experiment with implications for blue carbon.Biogeochemistry2022;160:159-75
|
| [40] |
Hidayah N,Arina N,Rozaimi M.Macroalgal and mangrove provenances demonstrate their relevance in contributing to the blue carbon pool of a tropical seagrass meadow.Ecol Res2022;37:21-32
|
| [41] |
Kwan V,Ng CSL.Temporal and spatial dynamics of tropical macroalgal contributions to blue carbon.Sci Total Environ2022;828:154369
|
| [42] |
Chen ZL.Tidal flats as a significant carbon reservoir in global coastal ecosystems.Front Mar Sci2022;9:900896
|
| [43] |
Chen J,Li Y.The carbon stock and sequestration rate in tidal flats from coastal China.Global Biogeochem Cycles2020;34:e2020GB006772
|
| [44] |
Murray NJ,DeWitt M.The global distribution and trajectory of tidal flats.Nature2019;565:222-5
|
| [45] |
Warner R,Dun O.Opportunities and challenges for mangrove carbon sequestration in the Mekong River Delta in Vietnam.Sustain Sci2016;11:661-77
|
| [46] |
Macreadie PI,Spinks B.Operationalizing marketable blue carbon.One Earth2022;5:485-92
|
| [47] |
Vanderklift MA,Butler JRA.Constraints and opportunities for market-based finance for the restoration and protection of blue carbon ecosystems.Mar Policy2019;107:103429
|
| [48] |
Davidson NC,Finlayson CM.Global extent and distribution of wetlands: trends and issues.Mar Freshwater Res2018;69:620-7
|
| [49] |
Taillardat P,Lupascu M.Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale.Biol Lett2018;14:20180251 PMCID:PMC6227866
|
| [50] |
Aoki LR,Wiberg PL.Seagrass recovery following marine heat wave influences sediment carbon stocks.Front Mar Sci2021;7:576784
|
| [51] |
Senger DF,Engel S,Moosdorf N.Impacts of wetland dieback on carbon dynamics: a comparison between intact and degraded mangroves.Sci Total Environ2021;753:141817
|
| [52] |
Wang F,Santos IR.Global blue carbon accumulation in tidal wetlands increases with climate change.Natl Sci Rev2021;8:nwaa296 PMCID:PMC8433083
|
| [53] |
Chatting M,Walton M.Future mangrove carbon storage under climate change and deforestation.Front Mar Sci2022;9:781876
|
| [54] |
Bouillon S,Castañeda-Moya E.Mangrove production and carbon sinks: a revision of global budget estimates.Global Biogeochem Cycles2008;22:GB2013
|
| [55] |
Alongi DM. The energetics of mangrove forests. Dordrecht, The Netherlands: Springer; 2009, pp. 163-7.
|
| [56] |
Alongi DM.Lateral export and sources of subsurface dissolved carbon and alkalinity in mangroves: revising the blue carbon budget.J Mar Sci Eng2022;10:1916
|
| [57] |
Chen X,Call M.The mangrove CO2 pump: tidally driven pore-water exchange.Limnol Oceanogr2021;66:1563-77
|
| [58] |
Wu Z,Tang D,Zidan A.Submarine groundwater discharge as a significant export of dissolved inorganic carbon from a mangrove tidal creek to Qinglan Bay (Hainan Island, China).Cont Shelf Res2021;223:104451
|
| [59] |
Wang ZA,Ganju NK,Chu SN.Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean.Limnol Oceanogr2016;61:1916-31
|
| [60] |
Chen X,Yu X.Porewater-derived dissolved inorganic carbon and nutrient fluxes in a saltmarsh of the Changjiang River Estuary.Acta Oceanol Sin2021;40:32-43
|
| [61] |
Osburn CL,Etheridge JR,Birgand F.Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary.J Geophys Res Biogeosci2015;120:1430-49
|
| [62] |
Codden CJ,Stubbins A.Non-conservative behavior of dissolved organic carbon in a Georgia salt marsh creek indicates summer outwelling.Estuar Coast Shelf Sci2022;265:107709
|
| [63] |
Correa RE,Conrad SR.Groundwater carbon exports exceed sediment carbon burial in a salt marsh.Estuar Coast2022;45:1545-61
|
| [64] |
Ismail RO,Gullström M.Effects of calcification on air-water CO2 fluxes in tropical seagrass meadows: a mesocosm experiment.J Exp Mar Biol Ecol2023;561:151864
|
| [65] |
Majtényi-hill C,Yau YY,Piñeiro-juncal N.Inorganic carbon outwelling from a Mediterranean seagrass meadow using radium isotopes.Estuar Coast Shelf Sci2023;283:108248
|
| [66] |
Saderne V,Thomson T.Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component.Limnol Oceanogr Lett2021;6:61-7
|
| [67] |
Reithmaier GMS,Johnston SG.Mangroves as a source of greenhouse gases to the atmosphere and alkalinity and dissolved carbon to the coastal ocean: a case study from the everglades national park, Florida.J Geophys Res Biogeosci2020;125:e2020JPG005812
|
| [68] |
Cabral A,Call M.Carbon and alkalinity outwelling across the groundwater-creek-shelf continuum off Amazonian mangroves.Limnol Oceanogr Lett2021;6:369-78
|
| [69] |
Reithmaier GMS,Junginger T.Alkalinity production coupled to pyrite formation represents an unaccounted blue carbon sink.Global Biogeochem Cycles2021;35:e2020GB006785
|
| [70] |
Yau YY,Chen X.Alkalinity export to the ocean is a major carbon sequestration mechanism in a macrotidal saltmarsh.Limnol Oceanogr2022;67:S158-70
|
| [71] |
Sippo JZ,Tait DR,Santos IR.Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect.Global Biogeochem Cycles2016;30:753-66
|
| [72] |
Banerjee K.Role of abiotic factors in enhancing the capacity of mangroves in reducing ocean acidification.Ecotoxicology2022;31:1169-88
|
| [73] |
Hendriks IE,Ramajo L.Photosynthetic activity buffers ocean acidification in seagrass meadows.Biogeosciences2014;11:333-46
|
| [74] |
Luan W,Zhang L.Enhalus acoroides efficiently alleviate ocean acidification by shifting modes of inorganic carbon uptake and increasing photosynthesis when pH drops.Mar Environ Res2023;186:105896
|
| [75] |
Job S,Yona G,Lugendo BR.Effect of seagrass cover loss on seawater carbonate chemistry: implications for the potential of seagrass meadows to mitigate ocean acidification.Reg Stud Mar Sci2023;60:102816
|
| [76] |
Ricart AM,Hill TM.Coast-wide evidence of low pH amelioration by seagrass ecosystems.Glob Chang Biol2021;27:2580-91 PMCID:PMC8252054
|
| [77] |
Guilini K,de Beer D.Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification.PLoS ONE2017;12:e0181531 PMCID:PMC5549886
|
| [78] |
Bergstrom E,Martins C.Seagrass can mitigate negative ocean acidification effects on calcifying algae.Sci Rep2019;9:1932 PMCID:PMC6374406
|
| [79] |
Wallace RB,Gobler CJ.Ecosystem metabolism modulates the dynamics of hypoxia and acidification across temperate coastal habitat types.Front Mar Sci2021;8:611781
|
| [80] |
Hunt CW,Vandemark D.Controls on buffering and coastal acidification in a temperate estuary.Limnol Oceanogr2022;67:1328-42
|
| [81] |
Chen X,Zhang Y.Plum rain enhances porewater greenhouse gas fluxes and weakens the acidification buffering potential in saltmarshes.J Hydrol2023;616:128686
|
| [82] |
Ling SD,Tilbrook B.Remnant kelp bed refugia and future phase-shifts under ocean acidification.PLoS One2020;15:e0239136 PMCID:PMC7546474
|
| [83] |
Xiao X,Yu Y.Seaweed farms provide refugia from ocean acidification.Sci Total Environ2021;776:145192
|
| [84] |
Doo SS,Graba-Landry A,Coleman RA.Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae.Ecol Evol2020;10:8465-75 PMCID:PMC7417211
|
| [85] |
Leal PP,Fernández PA.Ocean acidification and kelp development: reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida.J Phycol2017;53:557-66
|
| [86] |
Young CS.Ocean acidification accelerates the growth of two bloom-forming macroalgae.PLoS One2016;11:e0155152 PMCID:PMC4866684
|
| [87] |
Britton D,Revill AT,Johnson CR.Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata.Sci Rep2016;6:26036 PMCID:PMC4882519
|
| [88] |
Matsui N,Chukwamdee J.Soil organic carbon in mangrove ecosystems with different vegetation and sedimentological conditions.J Mar Sci Eng2015;3:1404-24
|
| [89] |
Gleeson J,Maher DT.Groundwater-surface water exchange in a mangrove tidal creek: evidence from natural geochemical tracers and implications for nutrient budgets.Mar Chem2013;156:27-37
|
| [90] |
Maher DT,Schulz KG,Jacobsen GE.Blue carbon oxidation revealed by radiogenic and stable isotopes in a mangrove system.Geophys Res Lett2017;44:4889-96
|
| [91] |
Choi Y.Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements.Global Biogeochem Cycles2004;18:
|
| [92] |
Kristensen E,Dittmar T.Organic carbon dynamics in mangrove ecosystems: a review.Aquat Bot2008;89:201-19
|
| [93] |
Oreska MPJ,Mcglathery KJ,Mckee BA.Non-seagrass carbon contributions to seagrass sediment blue carbon.Limnol Oceanogr2018;63:S3-18
|
| [94] |
Krause JR,Gray AB.Beyond habitat boundaries: organic matter cycling requires a system-wide approach for accurate blue carbon accounting.Limnol Oceanogr2022;67:S6-18
|
| [95] |
Drexler JZ,Woo I.Carbon sources in the sediments of a restoring vs. historically unaltered salt marsh.Estuar Coast2020;43:1345-60
|
| [96] |
Hemminga MA,Kazungu J,Nieuwenhuize J.Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs.Mar Ecol Prog Ser1994;106:291-301Available from: https://www.int-res.com/articles/meps/106/m106p291.pdf [Last accessed on 19 July 2022]
|
| [97] |
Chen G,Chmura GL.Mangroves as a major source of soil carbon storage in adjacent seagrass meadows.Sci Rep2017;7:42406 PMCID:PMC5301194
|
| [98] |
Huxham M,Githaiga M.Carbon in the coastal seascape: how interactions between mangrove forests, seagrass meadows and tidal marshes influence carbon storage.Curr For Rep2018;4:101-10
|
| [99] |
Liu S,Ewers Lewis CJ,Macreadie PI.Macroalgal blooms trigger the breakdown of seagrass blue carbon.Environ Sci Technol2020;54:14750-60
|
| [100] |
Guerra-Vargas LA,Mancera-Pineda JE.Stronger together: do coral reefs enhance seagrass meadows “blue carbon” potential?.Front Mar Sci2020;7:628
|
| [101] |
Mishra AK,Farooq SH.Ecological connectivity of seagrasses with mangroves increases the carbon storage of tropical seagrass meadows of an island ecosystem. Res Square 2021.
|
| [102] |
Akhand A,Chanda A.Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum.Sci Total Environ2021;752:142190
|
| [103] |
Ren L,Porada P.Biota-mediated carbon cycling-A synthesis of biotic-interaction controls on blue carbon.Ecol Lett2022;25:521-40
|
| [104] |
Atwood TB,Ritchie EG.Predators help protect carbon stocks in blue carbon ecosystems.Nat Clim Chang2015;5:1038-45
|
| [105] |
Xiao K,Li H.Large CO2 release and tidal flushing in salt marsh crab burrows reduce the potential for blue carbon sequestration.Limnol Oceanogr2021;66:14-29
|
| [106] |
Grow AK,Roberts BJ.Fiddler crab burrowing increases salt marsh greenhouse gas emissions.Biogeochemistry2022;158:73-90
|
| [107] |
Lyimo LD,Lyimo TJ.Shading and simulated grazing increase the sulphide pool and methane emission in a tropical seagrass meadow.Mar Pollut Bull2018;134:89-93
|
| [108] |
Dahl M,Lavery PS,Lovelock CE.Ranking the risk of CO2 emissions from seagrass soil carbon stocks under global change threats.Glob Environ Chang2023;78:102632
|
| [109] |
Saderne V,Macreadie PI.Role of carbonate burial in blue carbon budgets.Nat Comm2019;10:1106 PMCID:PMC6405941
|
| [110] |
Howard JL,Aguiar MVP.CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon” storage.Limnol Oceanogr2018;63:160-72
|
| [111] |
Kalokora OJ,Buriyo AS,Björk M.Seagrass meadows mixed with calcareous algae have higher plant productivity and sedimentary blue carbon storage.Ecol Evol2022;12:e8579 PMCID:PMC8843821
|
| [112] |
Roughan BL,Smith E.Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries.Environ Res Lett2018;13:044034
|
| [113] |
Schutte CA,Wilson AM.Groundwater-driven methane export reduces salt marsh blue carbon potential.Global Biogeochem Cycles2020;34:e2020GB0006587
|
| [114] |
Rosentreter JA,Erler DV,Eyre BD.Methane emissions partially offset “blue carbon” burial in mangroves.Sci Adv2018;4:eaao4985 PMCID:PMC6007160
|
| [115] |
Jeffrey LC,Sippo JZ.Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality.New Phytol2019;224:146-54
|
| [116] |
Malerba ME,Peacock M.Methane and nitrous oxide emissions complicate the climate benefits of teal and blue carbon wetlands.One Earth2022;5:1336-41
|
| [117] |
Li Y,Zeng L.Black carbon contributes substantially to allochthonous carbon storage in deltaic vegetated coastal habitats.Environ Sci Technol2021;55:6495-504
|
| [118] |
Gallagher JB,Aalders J.Wetlands 2021;41:65-72.
|
| [119] |
Chew ST.Accounting for black carbon lowers estimates of blue carbon storage services.Sci Rep2018;8:2553 PMCID:PMC5803216
|
| [120] |
Gallagher JB,Yap TK.Carbon stocks of coastal seagrass in Southeast Asia may be far lower than anticipated when accounting for black carbon.Biol Lett2019;15:20180745 PMCID:PMC6548729
|
| [121] |
Lovelock CE,Feller IC.CO2 efflux from cleared mangrove peat.PLoS One2011;6:e21279 PMCID:PMC3126811
|
| [122] |
Romero-Uribe HM,Reverchon F.Effect of degradation of a black mangrove forest on seasonal greenhouse gas emissions.Environ Sci Pollut Res Int2022;29:11951-65
|
| [123] |
Grellier S,Nhon DH.Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam).Sci Total Environ2017;593-4:654-63
|
| [124] |
Kitpakornsanti K,Limsakul A,Diloksumpun S.Greenhouse gas emissions from soil and water surface in different mangrove establishments and management in Ranong Biosphere Reserve, Thailand.Reg Stud Mar Sci2022;56:102690
|
| [125] |
Zhao X,Farfán LM.Tropical cyclones cumulatively control regional carbon fluxes in Everglades mangrove wetlands (Florida, USA).Sci Rep2021;11:13927 PMCID:PMC8260777
|
| [126] |
Miller WD,Anderson IC.Effects of sea level induced disturbances on high salt marsh metabolism.Estuaries2001;24:357-67
|
| [127] |
Sanders-DeMott R,Kroeger KD.Impoundment increases methane emissions in Phragmites-invaded coastal wetlands.Glob Chang Biol2022;28:4539-57
|
| [128] |
Barnes DKA. Blue carbon on polar and subpolar seabeds. In: Agarwal RK, editor. Carbon capture, utilization and sequestration. London: IntechOpen; 2018. pp. 37-56.
|
| [129] |
Barnes DKA,Sands CJ,Deregibus D.Icebergs, sea ice, blue carbon and Antarctic climate feedbacks.Philos Trans A Math Phys Eng Sci2018;376:20170176 PMCID:PMC5954474
|
| [130] |
Barnes DKA,Cook A.Blue carbon gains from glacial retreat along antarctic fjords: what should we expect?.Glob Chang Biol2020;26:2750-5 PMCID:PMC7216916
|
| [131] |
Zwerschke N,Roman-Gonzalez A.Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords.Glob Chang Biol2022;28:8-20
|
| [132] |
Morley SA,Vause BJ,Peck LS.Benthic biodiversity, carbon storage and the potential for increasing negative feedbacks on climate change in shallow waters of the Antarctic peninsula.Biology2022;11:320 PMCID:PMC8869673
|
| [133] |
Braekman U,Hoffmann R.Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy.Commun Biol2021;4:148 PMCID:PMC7846736
|
| [134] |
Zaborska A,Legeżyńska J,Winogradow A.Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords - signs of maturing of Arctic fjordic systems?.J Mar Syst2018;180:112-23
|
| [135] |
Włodarska-Kowalczuk M,Górska B,Jankowska E.Organic carbon origin, benthic faunal consumption, and burial in sediments of northern Atlantic and Arctic fjords (60-81°N).J Geophys Res Biogeosci2019;124:3737-51
|
| [136] |
Herbert LC,Laufer-meiser K.Tight benthic-pelagic coupling drives seasonal and interannual changes in iron-sulfur cycling in Arctic fjord sediments (Kongsfjorden, Svalbard).J Mar Syst2022;225:103645
|
| [137] |
Faust JC,Fisher BJ.Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments.Nat Comm2021;12:275 PMCID:PMC7804933
|
| [138] |
Ward RD.Carbon sequestration and storage in Norwegian Arctic coastal wetlands: impacts of climate change.Sci Total Environ2020;748:141343
|
| [139] |
Kelleway JJ,Macreadie PI.Geochemical analyses reveal the importance of environmental history for blue carbon sequestration.J Geophys Res Biogeosci2017;122:1789-805
|
| [140] |
Woodroffe CD,Chappell J.Development of widespread mangrove swamps in mid-Holocene times in northern Australia.Nature1985;317:711-3
|
| [141] |
Hanebuth TJ,Saito Y,Ta TKO.Early growth stage of a large delta - Transformation from estuarine-platform to deltaic-progradational conditions (the northeastern Mekong River Delta, Vietnam).Sediment Geol2012;261-2:108-19
|
| [142] |
Li Z,Mao L.Mid-holocene mangrove succession and its response to sea-level change in the upper Mekong River delta, Cambodia.Quat Res2012;78:386-99
|
| [143] |
Kaal J,Mateo MÁ.Deciphering organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting.Sci Total Environ2020;742:140554
|
| [144] |
Kaal J,Emeterio LMS.Fingerprinting macrophyte blue carbon by pyrolysis-GC-compound specific isotope analysis (Py-CSIA).Sci Total Environ2022;836:155598
|
| [145] |
Tan L,Ji Y.Land use and land cover changes in coastal and inland wetlands cause soil carbon and nitrogen loss.Global Ecol Biogeogr2022;31:2541-63
|
| [146] |
Lovelock CE,Morris JT.Modeled CO2 emissions from coastal wetland transitions to other land uses: tidal marshes, mangrove forests, and seagrass beds.Front Mar Sci2017;4:143
|
| [147] |
Ruiz-Fernández AC,Cuéllar-Martínez T.Increasing salinization and organic carbon burial rates in seagrass meadows from an anthropogenically-modified coastal lagoon in southern Gulf of Mexico.Estuar Coast Shelf Sci2020;242:106843
|
| [148] |
Cuéllar-Martínez T,Sanchez-Cabeza JA.Temporal records of organic carbon stocks and burial rates in Mexican blue carbon coastal ecosystems throughout the Anthropocene.Global Planet Chang2020;192:103215
|
| [149] |
Cuellar-Martinez T,Sanchez-Cabeza JA,Sandoval-Gil J.Relevance of carbon burial and storage in two contrasting blue carbon ecosystems of a north-east Pacific coastal lagoon.Sci Total Environ2019;675:581-93
|
| [150] |
Dahl M,Braun S.Impacts of land-use change and urban development on carbon sequestration in tropical seagrass meadow sediments.Mar Environ Res2022;176:105608
|
| [151] |
Ma T,Bai J,Zhou F.Four decades’ dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China.Sci Total Environ2019;655:741-50
|
| [152] |
Kauffman JB,Norfolk J.Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic.Ecol Appl2014;24:518-27
|
| [153] |
Kauffman JB,Ferreira TO,de O Gomes LE.Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves.Ecol Evol2018;8:5530-40 PMCID:PMC6010805
|
| [154] |
Bukoski JJ,Potts MD.Net loss statistics underestimate carbon emissions from mangrove land use and land cover change.Ecography2022;2022:ecog.05982
|
| [155] |
Kauffman JB,del Carmen Jesus Garcia M,Contreras WM.Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico.Wetlands Ecol Manag2016;24:203-16
|
| [156] |
Sasmito SD,Clendenning JN.Effect of land-use and land-cover change on mangrove blue carbon: a systematic review.Glob Chang Biol2019;25:4291-302
|
| [157] |
Richards DR,Wijedasa L.Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change.Nat Commun2020;11:4260 PMCID:PMC7450071
|