Novel Sn-Doped NASICON-Type Na3.2Zr2Si2.2P0.8O12 Solid Electrolyte With Improved Ionic Conductivity for a Solid-State Sodium Battery

Muhammad Akbar , Iqra Moeez , Young Hwan Kim , Mingony Kim , Jiwon Jeong , Eunbyoul Lee , Ali Hussain Umar Bhatti , Jae-Ho Park , Kyung Yoon Chung

Carbon Energy ›› 2025, Vol. 7 ›› Issue (5) : e717

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (5) : e717 DOI: 10.1002/cey2.717
RESEARCH ARTICLE

Novel Sn-Doped NASICON-Type Na3.2Zr2Si2.2P0.8O12 Solid Electrolyte With Improved Ionic Conductivity for a Solid-State Sodium Battery

Author information +
History +
PDF

Abstract

Solid electrolytes face challenges in solid-state sodium batteries (SSSBs) because of limited ionic conductivity, increased interfacial resistance, and sodium dendrite issues. In this study, we adopted a unique Sn4+ doping strategy for Na3.2Zr2Si2.2P0.8O12 (NZSP) that caused a partial structural transition from the monoclinic (C2/c) phase to the rhombohedral (R-3c) phase in Na3.2Zr1.9Sn0.1Si2.2P0.8O12 (NZSnSP1). X-ray diffraction (XRD) patterns and high-resolution transmission electron microscopy analyses were used to confirm this transition, where rhombohedral NZSnSP1 showed an increase in the Na2–O bond length compared with monoclinic NZSnSP1, increasing its triangular bottleneck areas and noticeably enhancing Na+ ionic conductivity, a higher Na transference number, and lower electronic conductivity. NZSnSP1 also showed exceptionally high compatibility with Na metal with an increased critical current density, as evidenced by symmetric cell tests. The SSSB, fabricated using Na0.9Zn0.22Fe0.3Mn0.48O2 (NZFMO), Na metal, and NZSnSP1 as the cathode, anode, and the solid electrolyte and separator, respectively, maintains 65.86% of retention in the reversible capacity over 300 cycles within a voltage range of 2.0–4.0 V at 25°C at 0.1 C. The in-situ X-ray diffraction and X-ray absorption analyses of the P and Zr K-edges confirmed that NZSnSP1 remained highly stable before and after electrochemical cycling. This crystal structure modification strategy enables the synthesis of ideal solid electrolytes for practical SSSBs.

Keywords

ionic conductivity / NASICON-type solid electrolyte / phase transition / Sn doping / solid-state battery

Cite this article

Download citation ▾
Muhammad Akbar, Iqra Moeez, Young Hwan Kim, Mingony Kim, Jiwon Jeong, Eunbyoul Lee, Ali Hussain Umar Bhatti, Jae-Ho Park, Kyung Yoon Chung. Novel Sn-Doped NASICON-Type Na3.2Zr2Si2.2P0.8O12 Solid Electrolyte With Improved Ionic Conductivity for a Solid-State Sodium Battery. Carbon Energy, 2025, 7(5): e717 DOI:10.1002/cey2.717

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Lu, F. Ding, Z. Xu, J. Liu, X. Liu, and Q. Xu, “Study on (100-x)(70Li2S-30P2S5)-xli2ZrO3 Glass- Ceramic Electrolyte for All-Solid-State Lithium-Ion Batteries,” Journal of Power Sources 356 (2017): 163-171.

[2]

Y. Meesala, Y. K. Liao, A. Jena, et al., “An Efficient Multi-Doping Strategy to Enhance Li-Ion Conductivity in the Garnet-Type Solid Electrolyte Li7La3Zr2O12,” Journal of Materials Chemistry A 7, no. 14 (2019): 8589-8601.

[3]

C. Wen, Z. Luo, H. Liang, X. Liu, W. Lei, and A. Lu, “Effect of Sintering Temperature and Holding Time on the Crystal Phase, Microstructure, and Ionic Conductivity of NASICON-Type 33Na2O-40ZrO2-40SiO2-10P2O5 Solid Electrolytes,” Applied Physics A 128 (2022): 71.

[4]

H. Duan, H. Zheng, Y. Zhou, B. Xu, and H. Liu, “Stability of Garnet-Type Li Ion Conductors: An Overview,” Solid State Ionics 318 (2018): 45-53.

[5]

Y. Ren, K. Chen, R. Chen, T. Liu, Y. Zhang, and C. W. Nan, “Oxide Electrolytes for Lithium Batteries,” Journal of the American Ceramic Society 98, no. 12 (2015): 3603-3623.

[6]

C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, “Recent Advances in All-Solid-State Rechargeable Lithium Batteries,” Nano Energy 33 (2017): 363-386.

[7]

Z. Wu, Z. Xie, A. Yoshida, et al., “Utmost Limits of Various Solid Electrolytes in All-Solid-State Lithium Batteries: A Critical Review,” Renewable and Sustainable Energy Reviews 109 (2019): 367-385.

[8]

J. B. Goodenough, H. Y. P. Hong, and J. A. Kafalas, “Fast Na+-Ion Transport in Skeleton Structures,” Materials Research Bulletin 11, no. 2 (1976): 203-220.

[9]

S. T. Lee, D. H. Lee, S. M. Lee, S. S. Han, S. H. Lee, and S. K. Lim, “Effects of Calcium Impurity on Phase Relationship, Ionic Conductivity and Microstructure of Na+-β/β″-Alumina Solid Electrolyte,” Bulletin of Materials Science 39 (2016): 729-735.

[10]

L. Zhang, K. Yang, J. Mi, et al., “Na3PSe4: A Novel Chalcogenide Solid Electrolyte With High Ionic Conductivity,” Advanced Energy Materials 5, no. 24 (2015): 1501294.

[11]

Z. Zhang, Q. Zhang, C. Ren, et al., “A Ceramic/Polymer Composite Solid Electrolyte for Sodium Batteries,” Journal of Materials Chemistry A 4, no. 41 (2016): 15823-15828.

[12]

F. Han, A. S. Westover, J. Yue, et al., “High Electronic Conductivity as the Origin of Lithium Dendrite Formation Within Solid Electrolytes,” Nature Energy 4, no. 3 (2019): 187-196.

[13]

X. Shen, Q. Zhang, T. Ning, et al., “Effects of a Dual Doping Strategy on the Structure and Ionic Conductivity of Garnet-Type Electrolyte,” Solid State Ionics 356 (2020): 115427.

[14]

S. Vasudevan, S. Dwivedi, and P. Balaya, “Overview and Perspectives of Solid Electrolytes for Sodium Batteries,” International Journal of Applied Ceramic Technology 20, no. 2 (2023): 563-584.

[15]

S. He, Y. Xu, Y. Chen, and X. Ma, “Enhanced Ionic Conductivity of an F—Assisted Na3Zr2Si2PO12 Solid Electrolyte for Solid-State Sodium Batteries,” Journal of Materials Chemistry A 8, no. 25 (2020): 12594-12602.

[16]

Y. Lu, J. A. Alonso, Q. Yi, L. Lu, Z. L. Wang, and C. Sun, “A High-Performance Monolithic Solid-State Sodium Battery With Ca2+ Doped Na3Zr2Si2PO12 Electrolyte,” Advanced Energy Materials 9, no. 28 (2019): 1901205.

[17]

Q. Ma, M. Guin, S. Naqash, C. L. Tsai, F. Tietz, and O. Guillon, “Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors,” Chemistry of Materials 28, no. 13 (2016): 4821-4828.

[18]

L. Wang and R. V. Kumar, “A New SO2 Gas Sensor Based on an Mg2+ Conducting Solid Electrolyte,” Journal of Electroanalytical Chemistry 543, no. 2 (2003): 109-114.

[19]

W. Wang, Z. Zhang, X. O.u., and J. Zhao, “Properties and Phase Relationship of the Na1+xHf2−yTiySixP3−xO12 System,” Solid State Ionics 28-30 (1988): 442-445.

[20]

A. Xu, R. Wang, M. Yao, et al., “Electrochemical Properties of an Sn-Doped LATP Ceramic Electrolyte and Its Derived Sandwich-Structured Composite Solid Electrolyte,” Nanomaterials. 12, no. 12 (2022): 2082.

[21]

C. Tantardini and A. R. Oganov, “Thermochemical Electronegativities of the Elements,” Nature Communications 12, no. 1 (2021): 2087.

[22]

K. Singh, A. Chakraborty, R. Thirupathi, and S. Omar, “Recent Advances in NASICON-Type Oxide Electrolytes for Solid-State Sodium-Ion Rechargeable Batteries,” Ionics 28, no. 12 (2022): 5289-5319.

[23]

Z. Zhang, Y. Shao, B. Lotsch, et al., “New Horizons for Inorganic Solid State Ion Conductors,” Energy & Environmental Science 11, no. 8 (2018): 1945-1976.

[24]

J. Yang, G. Liu, M. Avdeev, et al., “Ultrastable All-Solid-State Sodium Rechargeable Batteries,” ACS Energy Letters 5, no. 9 (2020): 2835-2841.

[25]

S. Mehraz, P. Kongsong, A. Taleb, N. Dokhane, and L. Sikong, “Large Scale and Facile Synthesis of Sn Doped TiO2 Aggregates Using Hydrothermal Synthesis,” Solar Energy Materials and Solar Cells 189 (2019): 254-262.

[26]

G. D. Park, J. K. Lee, and Y. Chan Kang, “Design and Synthesis of Janus-Structured Mutually Doped SnO2-Co3O4 Hollow Nanostructures as Superior Anode Materials for Lithium-Ion Batteries,” Journal of Materials Chemistry A 5, no. 48 (2017): 25319-25327.

[27]

B. Roose, J. P. C. Baena, K. C. Gödel, et al., “Mesoporous SnO2 Electron Selective Contact Enables UV-Stable Perovskite Solar Cells,” Nano Energy 30 (2016): 517-522.

[28]

A. Venkateswara Rao, V. Veeraiah, A. V. Prasada Rao, B. Kishore Babu, and M. Brahmayya, “Spectroscopic Characterization and Conductivity of Sn-Substituted Liti2(PO4)3,” Research on Chemical Intermediates 41 (2015): 4327-4337.

[29]

K. Wang, G. Teng, J. Yang, et al., “Sn (II,IV) Steric and Electronic Structure Effects Enable Self-Selective Doping on Fe/Si-Sites of Li2FeSiO4 Nanocrystals for High Performance Lithium Ion Batteries,” Journal of Materials Chemistry A 3 (2015): 24437-24445.

[30]

Y. Shao, G. Zhong, Y. Lu, et al., “A Novel NASICON-Based Glass-Ceramic Composite Electrolyte With Enhanced Na-Ion Conductivity,” Energy Storage Materials 23 (2019): 514-521.

[31]

C. Zhao, L. Liu, X. Qi, et al., “Solid-State Sodium Batteries,” Advanced Energy Materials 8, no. 17 (2018): 1703012.

[32]

S. Liu, C. Zhou, Y. Wang, et al., “Ce-Substituted Nanograin Na3Zr2Si2PO12 Prepared by LF- FSP as Sodium-Ion Conductors,” ACS Applied Materials & Interfaces 12, no. 3 (2019): 3502-3509.

[33]

Q. Wang, C. Yu, L. Li, et al., “Sc-Doping in Na3Zr2Si2PO12 Electrolytes Enables Preeminent Performance of Solid-State Sodium Batteries in a Wide Temperature Range,” Energy Storage Materials 54 (2023): 135-145.

[34]

Y. Ruan, F. Guo, J. Liu, S. Song, N. Jiang, and B. Cheng, “Optimization of Na3Zr2Si2PO12 Ceramic Electrolyte and Interface for High Performance Solid-State Sodium Battery,” Ceramics International 45, no. 2 (2019): 1770-1776.

[35]

J. A. S. Oh, L. He, A. Plewa, et al., “Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte With Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering,” ACS Applied Materials & Interfaces 11, no. 43 (2019): 40125-40133.

[36]

J. Yang, H. L. Wan, Z. H. Zhang, et al., “NASICON-Structured Na3.1Zr1.95Mg0.05Si2PO12 Solid Electrolyte for Solid-State Sodium Batteries,” Rare Metals 37 (2018): 480-487.

[37]

S. Naqash, Q. Ma, F. Tietz, and O. Guillon, “Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid State Reaction,” Solid State Ionics 302 (2017): 83-91.

[38]

Y. Wang, S. Song, C. Xu, N. Hu, J. Molenda, and L. Lu, “Development of Solid-State Electrolytes for Sodium-Ion Battery—A Short Review,” Nano Materials Science 1, no. 2 (2019): 91-100.

[39]

G. Assat, S. L. Glazier, C. Delacourt, and J. M. Tarascon, “Probing the Thermal Effects of Voltage Hysteresis in Anionic Redox-Based Lithium-Rich Cathodes Using Isothermal Calorimetry,” Nature Energy 4, no. 8 (2019): 647-656.

[40]

V. J. Ovejas and A. Cuadras, “Effects of Cycling on Lithium-Ion Battery Hysteresis and Overvoltage,” Scientific Reports 9, no. 1 (2019): 14875.

[41]

Y. Ren, Y. Shen, Y. Lin, and C. W. Nan, “Direct Observation of Lithium Dendrites Inside Garnet-Type Lithium-Ion Solid Electrolyte,” Electrochemistry Communications 57 (2015): 27-30.

[42]

L. Cheng, E. J. Crumlin, W. Chen, et al., “The Origin of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells Containing Garnet Type Solid Electrolytes,” Physical Chemistry Chemical Physics 16, no. 34 (2014): 18294-18300.

[43]

X. Li, D. Wu, Y. N. Zhou, L. Liu, X. Q. Yang, and G. Ceder, “O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A Quaternary Layered Cathode Compound for Rechargeable Na Ion Batteries,” Electrochemistry Communications 49 (2014): 51-54.

[44]

L. Mu, S. Xu, Y. Li, et al., “Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-layered Metal Oxide Cathode,” Advanced Materials 27, no. 43 (2015): 6928-6933.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/