Recent Advances in Sn-Based Heterojunction-Type Anode Materials for Alkali-Ion Batteries
Hui Li , Zhiqiang Liu , Lei Li , Yehong Zhang , Zeheng Li , Huixin Lan , Zhenhe Zhu , Yuchen Wu , Jiajia Li , Chuanbo Zheng , Jun Lu
Carbon Energy ›› 2025, Vol. 7 ›› Issue (5) : e703
Recent Advances in Sn-Based Heterojunction-Type Anode Materials for Alkali-Ion Batteries
The urgent demand for clean energy solutions has intensified the search for advanced storage materials, with rechargeable alkali-ion batteries (AIBs) playing a pivotal role in electrochemical energy storage. Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs. Next-generation anode materials face significant challenges, including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling. Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages. Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials. Despite significant advances in this field, comprehensive reviews summarizing the latest developments are still sparse. This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials. It begins with an explanation of the concept of heterojunctions, including their fabrication, characterization, and classification. Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted. Finally, the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.
characterization methods / electrochemical performance / heterojunction / Sn-based anode materials / synthesis methods
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |