Recent Advances in Sn-Based Heterojunction-Type Anode Materials for Alkali-Ion Batteries

Hui Li , Zhiqiang Liu , Lei Li , Yehong Zhang , Zeheng Li , Huixin Lan , Zhenhe Zhu , Yuchen Wu , Jiajia Li , Chuanbo Zheng , Jun Lu

Carbon Energy ›› 2025, Vol. 7 ›› Issue (5) : e703

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (5) : e703 DOI: 10.1002/cey2.703
REVIEW

Recent Advances in Sn-Based Heterojunction-Type Anode Materials for Alkali-Ion Batteries

Author information +
History +
PDF

Abstract

The urgent demand for clean energy solutions has intensified the search for advanced storage materials, with rechargeable alkali-ion batteries (AIBs) playing a pivotal role in electrochemical energy storage. Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs. Next-generation anode materials face significant challenges, including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling. Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages. Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials. Despite significant advances in this field, comprehensive reviews summarizing the latest developments are still sparse. This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials. It begins with an explanation of the concept of heterojunctions, including their fabrication, characterization, and classification. Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted. Finally, the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.

Keywords

characterization methods / electrochemical performance / heterojunction / Sn-based anode materials / synthesis methods

Cite this article

Download citation ▾
Hui Li, Zhiqiang Liu, Lei Li, Yehong Zhang, Zeheng Li, Huixin Lan, Zhenhe Zhu, Yuchen Wu, Jiajia Li, Chuanbo Zheng, Jun Lu. Recent Advances in Sn-Based Heterojunction-Type Anode Materials for Alkali-Ion Batteries. Carbon Energy, 2025, 7(5): e703 DOI:10.1002/cey2.703

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z. Li, Z. Wu, S. Wu, et al., “Designing Advanced Polymeric Binders for High-Performance Rechargeable Sodium Batteries,” Advanced Functional Materials 34, no. 6 (2024): 2307261.

[2]

P. Zhang, Y. Wang, Y. Wang, X. Ren, K. Liu, and S. Chen, “Electrochemical Lithiation and Delithiation Performance of Snsb-Ag/Carbon Nanonube Composites for Lithium-Ion Batteries,” Journal of Power Sources 233 (2013): 166-173.

[3]

L. Sun, H. Si, Y. Zhang, et al., “Sn-SnO2 Hybrid Nanoclusters Embedded in Carbon Nanotubes With Enhanced Electrochemical Performance for Advanced Lithium Ion Batteries,” Journal of Power Sources 415 (2019): 126-135.

[4]

C. Wang, Y. Zhang, Y. Li, et al., “Construction of Uniform SnS2/ZnS Heterostructure Nanosheets Embedded in Graphene for Advanced Lithium-Ion Batteries,” Journal of Alloys and Compounds 820 (2020): 153147.

[5]

J. Wang, J. Huang, S. Huang, et al., “Regulating the Effects of SnS Shrinkage in All-Solid-State Lithium-Ion Batteries With Excellent Electrochemical Performance,” Chemical Engineering Journal 429 (2022): 132424.

[6]

Y. Lu, X. Han, Z. Chu, et al., “A Decomposed Electrode Model for Real-Time Anode Potential Observation of Lithium-Ion Batteries,” Journal of Power Sources 513 (2021): 230529.

[7]

N. Cao, Y. Zhang, L. Chen, et al., “An Innovative Approach to Recover Anode From Spent Lithium-Ion Battery,” Journal of Power Sources 483 (2021): 229163.

[8]

H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, and T. Osaka, “Electrodeposited Sn-Ni Alloy Film as a High-Capacity Anode Material for Lithium-Ion Secondary Batteries,” Electrochemical and Solid-State Letters 6, no. 10 (2003): A218.

[9]

D. Zhou, A. A. Chekannikov, D. A. Semenenko, and O. A. Brylev, “Materials of Tin-Based Negative Electrode of Lithium-Ion Battery,” Russian Journal of Inorganic Chemistry 67, no. 9 (2022): 1488-1494.

[10]

J. M. Liang, L. J. Zhang, D. G. XiLi, and J. Kang, “Research Progress on Tin-Based Anode Materials for Sodium Ion Batteries,” Rare Metals 39, no. 9 (2020): 1005-1018.

[11]

R. Xu, G. Wang, T. Zhou, et al., “Rational Design of Si@carbon With Robust Hierarchically Porous Custard-Apple-Like Structure to Boost Lithium Storage,” Nano Energy 39 (2017): 253-261.

[12]

Q. Guo, C. Zhang, C. Zhang, et al., “Co3O4 Modified Ag/G-C3N4 Composite as a Bifunctional Cathode for Lithium-Oxygen Battery,” Journal of Energy Chemistry 41 (2020): 185-193.

[13]

S. Zhang, L. Qiu, Y. Zheng, et al., “Rational Design of Core-Shell ZnTe@N-Doped Carbon Nanowires for High Gravimetric and Volumetric Alkali Metal Ion Storage,” Advanced Functional Materials 31, no. 3 (2021): 2006425.

[14]

Y. Zhao, F. Wang, C. Wang, et al., “Encapsulating Highly Crystallized Mesoporous Fe3O4 in Hollow N-Doped Carbon Nanospheres for High-Capacity Long-Life Sodium-Ion Batteries,” Nano Energy 56 (2019): 426-433.

[15]

Y. Fu and C. Zhu, “Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective,” Acta Physico Chimica Sinica 39 (2022): 2209002.

[16]

V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, and J. Zhang, “A Review of Graphene and Graphene Oxide Sponge: Material Synthesis and Applications to Energy and the Environment,” Energy & Environmental Science 7, no. 5 (2014): 1564.

[17]

Y. Liu, Y. Xu, Y. Zhu, et al., “Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes,” ACS Nano 7, no. 4 (2013): 3627-3634.

[18]

Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P. A. van Aken, and J. Maier, “Encapsulation of Sn@carbon Nanoparticles in Bamboo-Like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries,” Angewandte Chemie International Edition 48, no. 35 (2009): 6485-6489.

[19]

D. McNulty, H. Geaney, Q. Ramasse, and C. O'Dwyer, “Long Cycle Life, Highly Ordered SnO2/GeO2 Nanocomposite Inverse Opal Anode Materials for Li-Ion Batteries,” Advanced Functional Materials 30, no. 51 (2020): 2005073.

[20]

K. Xu, L. Ma, X. Shen, et al., “Bimetallic Metal-Organic Framework Derived Sn-Based Nanocomposites for High-Performance Lithium Storage,” Electrochimica Acta 323 (2019): 134855.

[21]

S. Chen, L. Li, Q. Ge, et al., “Sn3O4 Nanosheets With N-Doped Carbon Coating for High Performance Lithium Storage,” Journal of Energy Storage 76 (January 2024): 109651.

[22]

C. Zhang, H. Li, X. Zeng, et al., “Accelerated Diffusion Kinetics in ZnTe/CoTe2 Heterojunctions for High-Rate Potassium Storage,” Advanced Energy Materials 12, no. 41 (2022): 2202577.

[23]

J. Chu, K. Han, Q. Yu, et al., “Schottky Junction and Multheterostructure Synergistically Enhance Rate Performance and Cycling Stability,” Chemical Engineering Journal 430 (2022): 132994.

[24]

Y. Miao, Y. Xiao, S. Hu, and S. Chen, “Chalcogenides Metal-Based Heterostructure Anode Materials Toward Na+-Storage Application,” Nano Research 16, no. 2 (2023): 2347-2365.

[25]

S. Yin, X. Zhang, Y. Wang, et al., “Multi-Type Heterostructures: Rational Design Anode Materials for Alkali-Ion Batteries,” Journal of Energy Storage 73 (2023): 109021.

[26]

Q. Peng, K. Hu, B. Sa, et al., “Unexpected Elastic Isotropy in a Black Phosphorene/TiC2 Van Der Waals Heterostructure With Flexible Li-Ion Battery Anode Applications,” Nano Research 10, no. 9 (2017): 3136-3150.

[27]

Z. I. Alferov, “The History and Future of Semiconductor Heterostructures,” Semiconductors 32, no. 1 (1998): 1-14.

[28]

I. Shin, W. J. Cho, E. S. An, et al., “Spin-Orbit Torque Switching in an All-Van Der Waals Heterostructure,” Advanced Materials 34, no. 8 (2022): 2101730.

[29]

L. Pan, A. Grutter, P. Zhang, et al., “Observation of Quantum Anomalous Hall Effect and Exchange Interaction in Topological Insulator/Antiferromagnet Heterostructure,” Advanced Materials 32, no. 34 (2020): 2001460.

[30]

Z. Liu, R. Wang, Q. Ma, et al., “A Dual-Functional Organic Electrolyte Additive With Regulating Suitable Overpotential for Building Highly Reversible Aqueous Zinc Ion Batteries,” Advanced Functional Materials 34, no. 5 (2024): 2214538.

[31]

S. Wang, Y. Yang, W. Quan, et al., “Ti3+-Free Three-Phase Li4Ti5O12/TiO2 for High-Rate Lithium Ion Batteries: Capacity and Conductivity Enhancement by Phase Boundaries,” Nano Energy 32 (2017): 294-301.

[32]

J. Ni, M. Sun, and L. Li, “Highly Efficient Sodium Storage in Iron Oxide Nanotube Arrays Enabled by Built-In Electric Field,” Advanced Materials 31, no. 41 (2019): 1902603.

[33]

S. Wang, S. Liu, X. Li, et al., “SnS2/Sb2S3 Heterostructures Anchored on Reduced Graphene Oxide Nanosheets With Superior Rate Capability for Sodium-Ion Batteries,” Chemistry—A European Journal 24, no. 15 (2018): 3873-3881.

[34]

L. Liang, W. Gu, Y. Wu, et al., “Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities,” Advanced Materials 34, no. 4 (2022): 2106195.

[35]

S. Uma and M. K. Shobana, “Band Structure and Mechanism of Semiconductor Metal Oxide Heterojunction Gas Sensor,” Inorganic Chemistry Communications 160 (2024): 111941.

[36]

A. Di Bartolomeo, “Graphene Schottky Diodes: An Experimental Review of the Rectifying Graphene/Semiconductor Heterojunction,” Physics Reports 606 (2016): 1-58.

[37]

H. Wang, L. Zhang, Z. Chen, et al., “Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances,” Chemical Society Reviews 43, no. 15 (2014): 5234.

[38]

Y. Reo, H. Zhu, A. Liu, and Y. Y. Noh, “Molecular Doping Enabling Mobility Boosting of 2D Sn2+-Based Perovskites,” Advanced Functional Materials 32, no. 38 (2022): 2270211.

[39]

Y. Zhu, K. Ameyama, P. M. Anderson, et al., “Heterostructured Materials: Superior Properties From Hetero-Zone Interaction,” Materials Research Letters 9, no. 1 (2021): 1-31.

[40]

P. Du, L. Cao, B. Zhang, et al., “Recent Progress on Heterostructure Materials for Next-Generation Sodium/Potassium Ion Batteries,” Renewable and Sustainable Energy Reviews 151 (2021): 111640.

[41]

S. Gbadamasi, M. Mohiuddin, V. Krishnamurthi, et al., “Interface Chemistry of Two-Dimensional Heterostructures-Fundamentals to Applications,” Chemical Society Reviews 50, no. 7 (2021): 4684-4729.

[42]

Y. Li, J. Zhang, Q. Chen, X. Xia, and M. Chen, “Emerging of Heterostructure Materials in Energy Storage: A Review,” Advanced Materials 33, no. 27 (2021): 2100855.

[43]

Y. Xiao, Y. Miao, S. Wan, Y. K. Sun, and S. Chen, “Synergistic Engineering of Se Vacancies and Heterointerfaces in Zinc-Cobalt Selenide Anode for Highly Efficient Na-Ion Batteries,” Small 18, no. 28 (2022): 2202582.

[44]

C. Zhang, F. Han, F. Wang, et al., “Improving Compactness and Reaction Kinetics of MoS2@C Anodes by Introducing Fe9S10 Core for Superior Volumetric Sodium/Potassium Storage,” Energy Storage Materials 24 (2020): 208-219.

[45]

R. Li, G. Zhang, Y. Wang, et al., “Fast Ion Diffusion Kinetics Based on Ferroelectric and Piezoelectric Effect of SnO2/BaTiO3 Heterostructures for High-Rate Sodium Storage,” Nano Energy 90 (2021): 106591.

[46]

C. Yang, X. Liang, X. Ou, et al., “Heterostructured Nanocube-Shaped Binary Sulfide (SnCo)S2 Interlaced With S-Doped Graphene as a High-Performance Anode for Advanced Na+ Batteries,” Advanced Functional Materials 29, no. 9 (2019): 1807971.

[47]

J. Lin, Z. Peng, W. Yang, et al, “Synergistic Effect Between 1T’-ReS2 Nanosheet Arrays and FeS2 Nano-Spindle in 1T’-ReS2@FeS2@NC Heterostructured Anode for Na+ Storage,” Electrochimica Acta 392 (2021): 139071.

[48]

Y. Dong, Y. Liu, Y. Hu, K. Ma, H. Jiang, and C. Li, “Boosting Reaction Kinetics and Reversibility in Mott-Schottky VS2/MoS2 Heterojunctions for Enhanced Lithium Storage,” Science Bulletin 65, no. 17 (2020): 1470-1478.

[49]

R. Fan, C. Zhao, J. Ma, et al., “Boosting Reaction Kinetics and Improving Long Cycle Life in Lamellar VS2/MoS2 Heterojunctions for Superior Sodium Storage Performance,” Journal of Materials Chemistry A 10, no. 2 (2022): 939-949.

[50]

X. Liu, Z. Niu, Y. Xu, et al., “Rational Design Heterostructured Bimetallic Selenides for High Capacity and Durability Sodium/Potassium-Ion Storage,” Chemical Engineering Journal 430 (2022): 133176.

[51]

F. Li, G. Luo, J. Yu, et al., “Terminal Hollowed Fe2O3@SnO2 Heterojunction Nanorods Anode Materials With Enhanced Performance for Lithium-Ion Battery,” Journal of Alloys and Compounds 773 (2019): 778-787.

[52]

J. Wang, Z. Zhang, and H. Zhao, “SnS2-SnS p-n Hetero-Junction Bonded on Graphene With Boosted Charge Transfer for Lithium Storage,” Nanoscale 13, no. 48 (2021): 20481-20487.

[53]

F. Zhao, X. Xiao, L. Yang, Z. Wang, S. Xu, and J. Liu, “Synergistical Coupling Janus SnS-Fe1-xS Heterostructure Cell and Polydopamine-Derived S Doped Carbon as High-Rate Anodes for Sodium-Ion Batteries,” Chemical Engineering Journal 425 (2021): 130534.

[54]

C. Ma, Y. Hou, K. Jiang, et al., “In Situ Cross-Linking Construction of 3D Mesoporous Bimetallic Phosphide-In-Carbon Superstructure With Atomic Interface Toward Enhanced Sodium Ion Storage Performance,” Chemical Engineering Journal 413 (2021): 127449.

[55]

P. Liu, J. Han, K. Zhu, Z. Dong, and L. Jiao, “Heterostructure SnSe2/ZnSe@PDA Nanobox for Stable and Highly Efficient Sodium-Ion Storage,” Advanced Energy Materials 10, no. 24 (2020): 2000741.

[56]

H. Bian, Z. Li, J. Pan, et al., “Multi-Heterostructured SnO2/Snsx Embedded in Carbon Framework for High-Performance Sodium-Ion Storage,” Journal of Colloid and Interface Science 628 (2022): 642-651.

[57]

Q. Ni, Y. Bai, S. Guo, et al., “Carbon Nanofiber Elastically Confined Nanoflowers: A Highly Efficient Design for Molybdenum Disulfide-Based Flexible Anodes Toward Fast Sodium Storage,” ACS Applied Materials & Interfaces 11, no. 5 (2019): 5183-5192.

[58]

W. Zhang, P. Cao, L. Li, et al., “Carbon-Encapsulated 1D SnO2/NiO Heterojunction Hollow Nanotubes as High-Performance Anodes for Sodium-Ion Batteries,” Chemical Engineering Journal 348 (2018): 599-607.

[59]

F. Dong, T. Xiong, Y. Sun, Y. Zhang, and Y. Zhou, “Controlling Interfacial Contact and Exposed Facets for Enhancing Photocatalysis via 2D-2D Heterostructures,” Chemical Communications 51, no. 39 (2015): 8249-8252.

[60]

Z. Li, Y. Yao, M. Zheng, et al., “Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries From −80°C to 80°C,” Angewandte Chemie International Edition (2024): e202409409.

[61]

C. Hu, L. Chen, Y. Hu, et al., “Light-Motivated SnO2/TiO2 Heterojunctions Enabling the Breakthrough in Energy Density for Lithium-Ion Batteries,” Advanced Materials 33, no. 49 (2021): 2103558.

[62]

Z. Li, Y. X. Yao, S. Sun, et al., “40 Years of Low-Temperature Electrolytes for Rechargeable Lithium Batteries,” Angewandte Chemie 135, no. 37 (2023): e202303888.

[63]

H. Xie, W. P. Kalisvaart, B. C. Olsen, E. J. Luber, D. Mitlin, and J. M. Buriak, “Sn-Bi-Sb Alloys as Anode Materials for Sodium Ion Batteries,” Journal of Materials Chemistry A 5, no. 20 (2017): 9661-9670.

[64]

F. Yang, H. Gao, J. Chen, and Z. Guo, “Phosphorus-Based Materials as the Anode for Sodium-Ion Batteries,” Small Methods 1, no. 11 (2017): 1700216.

[65]

J. Ge, L. Fan, J. Wang, et al., “MoSe2/N-Doped Carbon as Anodes for Potassium-Ion Batteries,” Advanced Energy Materials 8, no. 29 (2018): 1801477.

[66]

Z. Li, Z. Wan, X. Zeng, et al., “A Robust Network Binder via Localized Linking by Small Molecules for High-Areal-Capacity Silicon Anodes in Lithium-Ion Batteries,” Nano Energy 79 (2021): 105430.

[67]

Y. Huang, G. Xu, R. Wang, X. Liu, and L. Yang, “Heterostructured SnSe2-CoSe2 Microspheres Embedded in Reduced Graphene Oxides as an Anode Material With High Sodium Storage,” Ionics 27, no. 9 (2021): 3811-3820.

[68]

Z. Li, N. Yao, L. Yu, et al., “Inhibiting Gas Generation to Achieve Ultralong-Lifespan Lithium-Ion Batteries at Low Temperatures,” Matter 6, no. 7 (2023): 2274-2292.

[69]

C. Li, J. Hou, J. Zhang, et al., “Heterostructured NiS2@SnS2 Hollow Spheres as Superior High-Rate and Durable Anodes for Sodium-Ion Batteries,” Science China Chemistry 65, no. 7 (2022): 1420-1432.

[70]

S. Y. Liao, J. Chen, S. F. Cui, et al., “CoS2 Enhanced SnO2@rGO Heterostructure Quantum Dots for Advanced Lithium-Ion Battery Anode,” Journal of Power Sources 553 (2023): 232265.

[71]

J. Lin, L. Yao, C. Zhang, et al., “Construction of Sb2S3@SnS@C Tubular Heterostructures as High-Performance Anode Materials for Sodium-Ion Batteries,” ACS Sustainable Chemistry & Engineering 9, no. 33 (2021): 11280-11289.

[72]

Y. Q. Wu, H. X. Yang, Y. Yang, et al., “SnS2/Co3S4 Hollow Nanocubes Anchored on S-Doped Graphene for Ultrafast and Stable Na-Ion Storage,” Small 15, no. 46 (2019): 1903873.

[73]

X. Yu, C. Chen, R. Li, T. Yang, W. Wang, and Y. Dai, “Construction of SnS2@MoS2@rGO Heterojunction Anode and Their Half/Full Sodium Ion Storage Performances,” Journal of Alloys and Compounds 896 (2022): 162784.

[74]

Q. Li, S. Wang, Y. Wang, et al., “Electrochemical Performance of SnS-SnS2@CNTs Composites as Anode Materials for Sodium Ion Batteries,” Materials Letters 366 (2024): 136476.

[75]

Q. Li, F. Yu, Y. Cui, J. Wang, Y. Zhao, and J. Peng, “Multilayer SnS-SnS2@GO Heterostructures Nanosheet as Anode Material for Sodium Ion Battery With High Capacity and Stability,” Journal of Alloys and Compounds 937 (2023): 168392.

[76]

R. Jia, L. Li, G. Shen, and D. Chen, “Hierarchical Sb2S3/SnS2/C Heterostructure With Improved Performance for Sodium-Ion Batteries,” Science China Materials 65, no. 6 (2022): 1443-1452.

[77]

S. Guan, T. Wang, X. Fu, L. Z. Fan, and Z. Peng, “Coherent SnS2/NiS2 Hetero-Nanosheet Arrays With Fast Charge Transfer for Enhanced Sodium-Ion Storage,” Applied Surface Science 508 (2020): 145241.

[78]

S. Zhou, J. Lan, K. Song, Z. Zhang, J. Shi, and W. Chen, “SnS/SnS2/rGO Heterostructure With Fast Kinetics Enables Compact Sodium Ion Storage,” FlatChem 28 (2021): 100259.

[79]

L. Cui, C. Tan, G. Yang, et al., “Constructing an Interface Synergistic Effect From a SnS/MoS2 Heterojunction Decorating N, S Co-Doped Carbon Nanosheets With Enhanced Sodium Ion Storage Performance,” Journal of Materials Chemistry A 8, no. 43 (2020): 22593-22600.

[80]

W. Zhao, Y. Qi, M. Li, et al., “Sonochemical Synthesis of Sb2S3-Containing SnS2 Composites Anchored on Graphene Nanosheets for Enhanced Sodium Storage,” Materials Chemistry and Physics 277 (2022): 125510.

[81]

A. Sadaqat, G. Ali, M. ul Hassan, A. Liaqat, S. Khalid, and M. Farooq Khan, “Binary Co3S4/SnS Chalcogenide Composites Anchored on Graphene Oxide and Carbon Nanotubes as Anodes for Na-Ion Batteries,” Applied Surface Science 665 (2024): 160323.

[82]

Y. Wang, Q. Liu, Y. Liu, and L. Shuying, “Facile Synthesis of MoS2/SnS2/NC Heterojunction Nanosphere Composite as High-Performance Anode Material for Sodium-Ion Batteries,” Journal of Alloys and Compounds 967 (2023): 171562.

[83]

J. Ai, X. Zhao, Y. Lei, et al., “Pomegranate-Inspired SnS/ZnS@C Heterostructural Nanocubes Towards High-Performance Sodium Ion Battery,” Applied Surface Science 496 (2019): 143631.

[84]

H. Li, Y. He, Y. Dai, Y. Ren, T. Gao, and G. Zhou, “Bimetallic SnS2/NiS2@S-rGO Nanocomposite With Hierarchical Flower-Like Architecture for Superior High Rate and Ultra-Stable Half/Full Sodium-Ion Batteries,” Chemical Engineering Journal 427 (2022): 131784.

[85]

M. Hu, H. Zhang, L. Yang, and R. Lv, “Ultrahigh Rate Sodium-Ion Storage of SnS/SnS2 Heterostructures Anchored on S-Doped Reduced Graphene Oxide by Ion-Assisted Growth,” Carbon 143 (2019): 21-29.

[86]

L. Cheng, Y. Zhang, P. Chu, et al., “Heterostructure Enhanced Sodium Storage Performance for SnS2 in Hierarchical Sns2/Co3S4Nanosheet Array Composite,” Journal of Materials Chemistry A 9, no. 3 (2021): 1630-1642.

[87]

J. Xu, L. Wang, K. J. Huang, et al., “Hollow Nanorods Mos2@SnS Heterojunction for Sodium Storage With Enhanced Cyclic Stability,” Chemical Engineering Science 256 (2022): 117702.

[88]

J. Lu, S. Zhao, S. Fan, Q. Lv, J. Li, and R. Lv, “Hierarchical SnS/SnS2 Heterostructures Grown on Carbon Cloth as Binder-Free Anode for Superior Sodium-Ion Storage,” Carbon 148 (2019): 525-531.

[89]

J. Yan, P. Xu, S. Chen, et al., “Construction of Highly Ordered ZnO Microrod@SnO2 Nanowire Heterojunction Hybrid With a Test-Tube Brush-Like Structure for High Performance Lithium-Ion Batteries: Experimental and Theoretical Study,” Electrochimica Acta 330 (2020): 135312.

[90]

X. Hu, G. Wang, B. Wang, X. Liu, and H. Wang, “Co3Sn2/SnO2 Heterostructures Building Double Shell Micro-Cubes Wrapped in Three-Dimensional Graphene Matrix as Promising Anode Materials for Lithium-Ion and Sodium-Ion Batteries,” Chemical Engineering Journal 355 (2019): 986-998.

[91]

N. Zhang, Q. Meng, H. Wu, et al., “Co-MOF as Stress-Buffered Architecture: An Engineering for Improving the Performance of NiS/SnO2 Heterojunction in Lithium Storage,” Advanced Energy Materials 13, no. 25 (2023): 2300413.

[92]

B. Zhang, C. Zhang, B. Liu, X. Zhou, and G. Huang, “Anchoring SbxOy/SnO2 Nano-Heterojunction on Reduced Graphene Oxide as Lithium Ion Batteries Anodes With Remarkable Rate Performance and Excellent Cycle Stability,” Ionics 27, no. 10 (2021): 4205-4216.

[93]

G. H. Zhan, W. H. Liao, Q. Q. Hu, X. H. Wu, and X. Y. Huang, “Rational Engineering of p-n Heterogeneous ZnS/SnO2 Quantum Dots With Fast Ion Kinetics for Superior Li/Na-Ion Battery,” Small 19, no. 43 (2023): 2300413.

[94]

R. Zhang, T. Fang, L. Ni, et al., “SnO2/Bi2O3/NF Heterojunction With Ordered Macro/Meso-Pore Structure as an Advanced Binder-Free Anode for Lithium Ion Batteries,” Journal of Electroanalytical Chemistry 907 (2022): 115894.

[95]

T. Hu, S. Z. Abidin, O. Hasdinor Hassan, V. VetoVermol, and X. Zhao, “Three-Phase Sn-Based Heterostructure Nanoparticles Anchored on N-Doped Graphene as a Promising Anode for Lithium/Sodium Storage,” Journal of Electroanalytical Chemistry 955 (2024): 118063.

[96]

H. Zhuang, M. Han, W. Ma, et al., “Sandwich-Structured Graphene Hollow Spheres Limited Mn2SnO4/SnO2 Heterostructures as Anode Materials for High-Performance Lithium-Ion Batteries,” Journal of Colloid and Interface Science 586 (2021): 1-10.

[97]

X. Cheng, Q. Bai, H. Li, et al., “Nanoconfined SnS2 in Robust SnO2 Nanocrystals Building Heterostructures for Stable Sodium Ion Storage,” Chemical Engineering Journal 442 (2022): 136222.

[98]

H. Yin, G. Zhan, R. Yan, X. Wu, Q. Hu, and X. Huang, “p-n Heterogeneous Sb2S3/SnO2 Quantum Dot Anchored Reduced Graphene Oxide Nanosheets for High-Performance Lithium-Ion Batteries,” Dalton Transactions 53, no. 16 (2024): 7142-7151.

[99]

K. Chen, X. Wang, G. Wang, et al., “A New Generation of High Performance Anode Materials With Semiconductor Heterojunction Structure of SnSe/SnO2@Gr in Lithium-Ion Batteries,” Chemical Engineering Journal 347 (2018): 552-562.

[100]

S. Tian, X. Cheng, H. Li, M. Wang, and X. Wang, “A Heterogeneous Structured C/SnO2/SnSe2@C Hybrid: Exploring the Superior Rate Performance in Sodium Ion Batteries,” Materials Today Chemistry 30 (2023): 101524.

[101]

R. Khan, Y. Xing, J. Wang, et al., “Core-Shell SnSe@TiO2/C Heterostructure High-Performance Anode for Na-Ion Batteries,” Journal of Alloys and Compounds 880 (2021): 160469.

[102]

W. Wang, L. Hu, L. Li, et al., “Constructing a Rapid Ion and Electron Migration Channels in MoSe2/SnSe2@C 2D Heterostructures for High-Efficiency Sodium-Ion Half/Full Batteries,” Electrochimica Acta 449 (2023): 142239.

[103]

J. Chu, K. Han, Q. Yu, et al., “Schottky Junction and Multiheterostructure Synergistically Enhance Rate Performance and Cycling Stability,” Chemical Engineering Journal 430 (2022): 132994.

[104]

D. Gui, Z. Wei, J. Chen, et al., “Boosting the Sodium Storage of the 1T/2H MoS2@SnO2 Heterostructure via a Fast Surface Redox Reaction,” Journal of Materials Chemistry A 9, no. 1 (2021): 463-471.

[105]

L. Tang, B. Zhang, T. Peng, et al., “MoS2/SnS@C Hollow Hierarchical Nanotubes as Superior Performance Anode for Sodium-Ion Batteries,” Nano Energy 90 (2021): 106568.

[106]

S. Yin, X. Zhang, X. Huang, F. Zhou, Y. Wang, and G. Wen, “SnO/SnO2 Heterojunction Nanoparticles Anchored on Graphene Nanosheets for Lithium Storage,” ACS Applied Nano Materials 7, no. 12 (2024): 14419-14430.

[107]

W. Feng, X. Wen, Y. Wang, et al., “Interfacial Coupling SnSe2/SnSe Heterostructures as Long Cyclic Anodes of Lithium-Ion Battery,” Advanced Science 10, no. 2 (2023): 2204671.

[108]

T. Wang, D. Legut, Y. Fan, J. Qin, X. Li, and Q. Zhang, “Building Fast Diffusion Channel by Constructing Metal Sulfide/Metal Selenide Heterostructures for High-Performance Sodium Ion Batteries Anode,” Nano Letters 20, no. 8 (2020): 6199-6205.

[109]

H. Li, B. Zhang, X. Ou, et al., “In-Situ Fabrication of Heterostructured Snox@C/rGO Composite With Durable Cycling Life for Improved Lithium Storage,” Ceramics International 45, no. 15 (2019): 18743-18750.

[110]

Y. Choi, J. Lee, J. Seo, S. Jung, U. Kim, and H. Park, “The Effect of the Graphene Integration Process on the Performance of Graphene-Based Schottky Junction Solar Cells,” Journal of Materials Chemistry A 5, no. 35 (2017): 18716-18724.

[111]

A. Monreal-Bernal and J. J. Vilatela, “Large-Area Schottky Junctions Between ZnO and Carbon Nanotube Fibres,” ChemPlusChem 83, no. 4 (2018): 285-293.

[112]

L. Wang, X. Li, Z. Jin, et al., “Spatially Controlled Synthesis of Superlattice-Like SnS/Nitrogen-Doped Graphene Hybrid Nanobelts as High-Rate and Durable Anode Materials for Sodium-Ion Batteries,” Journal of Materials Chemistry A 7, no. 48 (2019): 27475-27483.

[113]

L. Ran, B. Luo, I. R. Gentle, et al., “Biomimetic Sn4P3 Anchored on Carbon Nanotubes as an Anode for High-Performance Sodium-Ion Batteries,” ACS Nano 14, no. 7 (2020): 8826-8837.

[114]

L. Wang, Y. He, D. Liu, et al., “SnO2 Quantum Dots Interspersed D-Ti3C2Tx Mxene Heterostructure With Enhanced Performance for Lithium Ion Battery,” Journal of the Electrochemical Society 167, no. 11 (2020): 116522.

[115]

J. B. Cook, T. C. Lin, E. Detsi, J. N. Weker, and S. H. Tolbert, “Using X-Ray Microscopy to Understand How Nanoporous Materials Can Be Used to Reduce the Large Volume Change in Alloy Anodes,” Nano Letters 17, no. 2 (2017): 870-877.

[116]

J. Hassoun, G. Derrien, S. Panero, and B. Scrosati, “A Nanostructured Sn-C Composite Lithium Battery Electrode With Unique Stability and High Electrochemical Performance,” Advanced Materials 20, no. 16 (2008): 3169-3175.

[117]

C. K. Chan, H. Peng, G. Liu, et al., “High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nature Nanotechnology 3, no. 1 (2008): 31-35.

[118]

K. S. Chen, R. Xu, N. S. Luu, et al., “Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion,” Nano Letters 17, no. 4 (2017): 2539-2546.

[119]

F. Jiao, J. Bao, A. H. Hill, and P. G. Bruce, “Synthesis of Ordered Mesoporous Li-Mn-O Spinel as a Positive Electrode for Rechargeable Lithium Batteries,” Angewandte Chemie International Edition 47, no. 50 (2008): 9711-9716.

[120]

Y. Wang, H. Li, P. He, E. Hosono, and H. Zhou, “Nano Active Materials for Lithium-Ion Batteries,” Nanoscale 2, no. 8 (2010): 1294.

[121]

W. L. Li, H. Lai, C. H. Sun, Y. Y. Lin, Y. H. Sun, and J. M. Nan, “Heterojunction of SnO/Sn Nanoparticles Coated by Graphene-Like Porous Carbon as Ultrahigh Capacity Anode of Lithium-Ion Batteries,” Journal of Alloys and Compounds 948 (2023): 169811.

[122]

S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, no. 6348 (1991): 56-58.

[123]

P. Li, X. Guo, R. Zang, et al., “Nanoconfined SnO2/SnSe2 Heterostructures in N-Doped Carbon Nanotubes for High-Performance Sodium-Ion Batteries,” Chemical Engineering Journal 418 (2021): 129501.

[124]

N. Kamboj, B. Debnath, S. Bhardwaj, et al., “Ultrafine Mix-Phase SnO-SnO2 Nanoparticles Anchored on Reduced Graphene Oxide Boost Reversible Li-Ion Storage Capacity Beyond Theoretical Limit,” ACS Nano 16, no. 9 (2022): 15358-15368.

[125]

H. Li, B. Zhang, X. Wang, et al., “Heterostructured SnO2-SnS2@C Embedded in Nitrogen-Doped Graphene as a Robust Anode Material for Lithium-Ion Batteries,” Frontiers in Chemistry 7 (2019): 00339.

[126]

P. G. Bruce, B. Scrosati, and J. M. Tarascon, “Nanomaterials for Rechargeable Lithium Batteries,” Angewandte Chemie International Edition 47, no. 16 (2008): 2930-2946.

[127]

C. Chen, L. Peng, Y. Li, et al., “Granadilla-Inspired Structure Design for Conversion/Alloy-Reaction Electrode With Integrated Lithium Storage Behaviors,” ACS Applied Materials & Interfaces 9, no. 18 (2017): 15470-15476.

[128]

B. Zhu, H. Xie, Y. Chen, et al., “Multidimensional Heterostructure Sn-Based (SnO2/MoS2)@C Composites as Superior Anode Material for Lithium-Ion Batteries,” Energy Technology 12, no. 2 (2024): 2300761.

[129]

M. Alhabeb, K. Maleski, B. Anasori, et al., “Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx Mxene),” Chemistry of Materials 29, no. 18 (2017): 7633-7644.

[130]

X. Dong, R. Zhao, B. Sun, et al., “Confining Homogeneous Ni0.5Co0.5Se2 Nanoparticles in Ti3C2Tx Mxene Architectures for Enhanced Sodium Storage Performance,” Applied Surface Science 605 (2022): 154847.

[131]

Y. L. Hou, J. Z. Chen, B. H. Zhang, H. Y. Wang, W. X. Wen, and D. L. Zhao, “Fast Ion/Electron Transport Enabled by Mxene Confined Bimetallic Sulfides With Heterostructure Toward Highly Effective Lithium/Sodium Storage,” Chemical Engineering Journal 479 (2024): 147914.

[132]

Y. Lin, X. Guo, M. Hu, et al., “A MoS2@SnS Heterostructure for Sodium-Ion Storage With Enhanced Kinetics,” Nanoscale 12, no. 27 (2020): 14689-14698.

[133]

L. Y. Yang, J. R. Xie, A. Abliz, et al., “Hollow Paramecium-Like SnO2/TiO2 Heterostructure Designed for Sodium Storage,” Journal of Solid State Chemistry 274 (2019): 176-181.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/