A Self-Recognition Separator for Ion Management to Customize Selective Zn2+ Channels Toward Dendrite-Free Zinc Metal Anodes

Yingbo Shao , Wen Lu , Tianyu Zhang , Bowen Yin , Bin-Bin Xie , Jiqiang Ning , Yong Hu

Carbon Energy ›› 2025, Vol. 7 ›› Issue (4) : e701

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (4) : e701 DOI: 10.1002/cey2.701
RESEARCH ARTICLE

A Self-Recognition Separator for Ion Management to Customize Selective Zn2+ Channels Toward Dendrite-Free Zinc Metal Anodes

Author information +
History +
PDF

Abstract

Aqueous zinc-ion batteries (ZIBs) are promising candidates for next-generation energy storage, but the problems related to Zn dendrites and side reactions severely hinder their practical applications. Herein, a self-recognition separator based on a Bi-based metal–organic framework (GF@CAU-17) is developed for ion management to achieve highly reversible Zn anodes. The GF@CAU-17 has self-recognition behavior to customize selective Zn2+ channels, effectively repelling SO42– and H2O, but facilitating Zn2+ conduction. The inherent properties of CAU-17 result in the repulsion of SO42– ions while disrupting the hydrogen bond network among free H2O molecules, restraining side reactions and by-products. Simultaneously, the zincophilic characteristic of CAU-17 expedites the desolvation of [Zn(H2O)6]2+, leading to a self-expedited Zn2+ ion pumping effect that dynamically produces a steady and homogeneous Zn2+ ion flux, and thereby alleviates concentration polarization. Consequently, a symmetric cell based on the GF@CAU-17 separator can achieve a long lifespan of 4450 h. Moreover, the constructed Zn//GF@CAU-17//MnO2 cell delivers a high specific capacity of 221.8 mAh g−1 and 88.0% capacity retention after 2000 cycles.

Keywords

CAU-17 / self-recognition separator / ion management / selective Zn2+ channels / Zn anodes

Cite this article

Download citation ▾
Yingbo Shao, Wen Lu, Tianyu Zhang, Bowen Yin, Bin-Bin Xie, Jiqiang Ning, Yong Hu. A Self-Recognition Separator for Ion Management to Customize Selective Zn2+ Channels Toward Dendrite-Free Zinc Metal Anodes. Carbon Energy, 2025, 7(4): e701 DOI:10.1002/cey2.701

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Zhang, Y. Dai, R. Chen, et al., “Highly Reversible Zinc Metal Anode in a Dilute Aqueous Electrolyte Enabled by a pH Buffer Additive,” Angewandte Chemie International Edition 62, no. 5 (2023): e202212695.

[2]

Y. Liu, X. Lu, F. Lai, et al., “Rechargeable Aqueous Zn-Based Energy Storage Devices,” Joule 5, no. 11 (2021): 2845-2903.

[3]

Z. Wang, Y. Li, J. Wang, et al., “Recent Progress of Flexible Aqueous Multivalent Ion Batteries,” Carbon Energy 4, no. 3 (2022): 411-445.

[4]

C. Shi, T. Wang, X. Liao, et al., “Accordion-Like Stretchable Li-Ion Batteries With High Energy Density,” Energy Storage Materials 17 (2019): 136-142.

[5]

Y. Lv, Y. Xiao, L. Ma, C. Zhi, and S. Chen, “Recent Advances in Electrolytes for “Beyond Aqueous” Zinc-Ion Batteries,” Advanced Materials 34, no. 4 (2022): 2106409.

[6]

M. Li, R. P. Hicks, Z. Chen, et al., “Electrolytes in Organic Batteries,” Chemical Reviews 123, no. 4 (2023): 1712-1773.

[7]

J. Hao, X. Li, X. Zeng, D. Li, J. Mao, and Z. Guo, “Deeply Understanding the Zn Anode Behaviour and Corresponding Improvement Strategies in Different Aqueous Zn-Based Batteries,” Energy & Environmental Science 13, no. 11 (2020): 3917-3949.

[8]

B. Niu, Z. Xu, J. Xiao, and Y. Qin, “Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency Progress Challenge and Viable Approach,” Chemical Reviews 123, no. 13 (2023): 8718-8735.

[9]

J. Wei, P. Zhang, J. Sun, et al., “Advanced Electrolytes for High-Performance Aqueous Zinc-Ion Batteries,” Chemical Society Reviews 53, no. 20 (2024): 10335-10369.

[10]

H. Wang, W. Ye, B. Yin, et al., “Modulating Cation Migration and Deposition With Xylitol Additive and Oriented Reconstruction of Hydrogen Bonds for Stable Zinc Anodes,” Angewandte Chemie International Edition 62, no. 10 (2023): e202218872.

[11]

W. Lu, B. B. Xie, C. Yang, et al., “Phosphorus-Mediated Local Charge Distribution of N-Configuration Adsorption Sites With Enhanced Zincophilicity and Hydrophilicity for High-Energy-Density Zn-Ion Hybrid Supercapacitors,” Small 19, no. 45 (2023): 2302629.

[12]

D. Zhang, Y. Fu, Q. Wei, et al., “Controllable and Large-Area Growth of Zno Nanosheet Arrays Under Ambient Condition as Superior Anodes for Scalable Aqueous Batteries,” Carbon Energy 5, no. 12 (2023): e359.

[13]

M. Li, Z. Li, X. Wang, et al., “Comprehensive Understanding of the Roles of Water Molecules in Aqueous Zn-Ion Batteries: From Electrolytes to Electrode Materials,” Energy & Environmental Science 14, no. 7 (2021): 3796-3839.

[14]

M. Liu, W. Yuan, G. Ma, et al., “In-Situ Integration of a Hydrophobic and Fast-Zn2+-Conductive Inorganic Interphase to Stabilize Zn Metal Anodes,” Angewandte Chemie International Edition 62, no. 27 (2023): e202304444.

[15]

L. Xiong, H. Fu, K. Yang, et al., “Reversible Zn/Polymer Heterogeneous Anode,” Carbon Energy 5, no. 6 (2023): e370.

[16]

Z. Hao, Y. Wu, Q. Zhao, et al., “Functional Separators Regulating Ion Transport Enabled by Metal-Organic Frameworks for Dendrite-Free Lithium Metal Anodes,” Advanced Functional Materials 31, no. 33 (2021): 2102938.

[17]

R. Deng, Z. He, F. Chu, et al., “An Aqueous Electrolyte Densified by Perovskite SrTiO3 Enabling High-Voltage Zinc-Ion Batteries,” Nature Communications 14, no. 1 (2023): 4981.

[18]

Z. Hou and B. Zhang, “Boosting Zn Metal Anode Stability: From Fundamental Science to Design Principles,” EcoMat 4, no. 6 (2022): e12265.

[19]

J. L. Yang, T. Xiao, T. Xiao, et al., “Cation-Conduction Dominated Hydrogels for Durable Zinc-Iodine Batteries,” Advanced Materials 36 (2024): 2313610.

[20]

J. Ke, Z. Wen, Y. Yang, et al., “Tailoring Anion Association Strength Through Polycation-Anion Coordination Mechanism in Imidazole Polymeric Ionic Liquid-Based Artificial Interphase Toward Durable Zn Metal Anodes,” Advanced Functional Materials 33, no. 26 (2023): 2301129.

[21]

C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang, and H. Wang, “Issues and Solutions Toward Zinc Anode in Aqueous Zinc-Ion Batteries: A Mini Review,” Carbon Energy 2, no. 4 (2020): 540-560.

[22]

R. Chen, W. Zhang, C. Guan, et al., “Rational Design of an In-Situ Polymer-Inorganic Hybrid Solid Electrolyte Interphase for Realising Stable Zn Metal Anode Under Harsh Conditions,” Angewandte Chemie International Edition 63, no. 21 (2024): e202401987.

[23]

Z. Yi, G. Chen, F. Hou, L. Wang, and J. Liang, “Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries,” Advanced Energy Materials 11, no. 1 (2021): 2003065.

[24]

J. Zhu, Z. Tie, S. Bi, and Z. Niu, “Towards More Sustainable Aqueous Zinc-Ion Batteries,” Angewandte Chemie 136 (2024): e202403712.

[25]

A. Voutetaki, K. V. Plakas, A. I. Papadopoulos, D. Bollas, S. Parcharidis, and P. Seferlis, “Pilot-Scale Separation of Lead and Sulfate Ions From Aqueous Solutions Using Electrodialysis: Application and Parameter Optimization for the Battery Industry,” Journal of Cleaner Production 410 (2023): 137200.

[26]

X. Wu, A. M. Gilchrist, and P. A. Gale, “Prospects and Challenges in Anion Recognition and Transport,” Chem 6, no. 6 (2020): 1296-1309.

[27]

K. Ouyang, S. Chen, W. Ling, et al., “Synergistic Modulation of In-Situ Hybrid Interface Construction and pH Buffering Enabled Ultra-Stable Zinc Anode at High Current Density and Areal Capacity,” Angewandte Chemie 135, no. 45 (2023): e202311988.

[28]

D. H. Kang, E. Lee, B. S. Youn, et al., “Critical Factors to Inhibit Water-Splitting Side Reaction in Carbon-Based Electrode Materials for Zinc Metal Anodes,” Carbon Energy 4, no. 6 (2022): 1080-1092.

[29]

L. Du, S. Bi, Y. Hu, et al., “A Universal Spray Printing Strategy to Prepare Gradient Hybrid Architectures,” Carbon Energy 4, no. 4 (2022): 517-526.

[30]

H. Yan, S. Li, J. Zhong, and B. Li, “An Electrochemical Perspective of Aqueous Zinc Metal Anode,” Nano-Micro Letters 16, no. 1 (2023): 15.

[31]

X. Li, L. Wang, Y. Fu, H. Dang, D. Wang, and F. Ran, “Optimization Strategies Toward Advanced Aqueous Zinc-Ion Batteries: From Facing Key Issues to Viable Solutions,” Nano Energy 116 (2023): 108858.

[32]

F. Shen, H. Du, H. Qin, et al., “Mediating Triple Ions Migration Behavior via a Fluorinated Separator Interface Toward Highly Reversible Aqueous Zn Batteries,” Small 20, no. 1 (2024): 2305119.

[33]

J. Chen, M. Chen, H. Ma, W. Zhou, and X. Xu, “Advances and Perspectives on Separators of Aqueous Zinc Ion Batteries,” Energy Reviews 1, no. 1 (2022): 100005.

[34]

R. Manjunatha, J. Yuan, L. Hongwei, et al., “Facile Carbon Cloth Activation Strategy to Boost Oxygen Reduction Reaction Performance for Flexible Zinc-Air Battery Application,” Carbon Energy 4, no. 5 (2022): 762-775.

[35]

H. Chen, X. Li, K. Fang, H. Wang, J. Ning, and Y. Hu, “Aqueous Zinc-Iodine Batteries: From Electrochemistry to Energy Storage Mechanism,” Advanced Energy Materials 13, no. 41 (2023): 2302187.

[36]

Q. Zhang, B. Hou, X. Wu, et al., “An Ion-Management Membrane With Vertically Aligned Uniform Electronegative Nanochannels Toward Dendrite-Free Lithium Metal Anodes,” Advanced Energy Materials 14, no. 40 (2024): 2401377.

[37]

L. Yao, G. Wang, F. Zhang, X. Chi, and Y. Liu, “Highly-Reversible and Recyclable Zinc Metal Batteries Achieved by Inorganic/Organic Hybrid Separators With Finely Tunable Hydrophilic-Hydrophobic Balance,” Energy & Environmental Science 16, no. 10 (2023): 4432-4441.

[38]

Y. Liang, D. Ma, N. Zhao, et al., “Novel Concept of Separator Design: Efficient Ions Transport Modulator Enabled by Dual-Interface Engineering Toward Ultra-Stable Zn Metal Anodes,” Advanced Functional Materials 32, no. 25 (2022): 2112936.

[39]

P. Xiong, F. Zhang, X. Zhang, et al., “Atomic-Scale Regulation of Anionic and Cationic Migration in Alkali Metal Batteries,” Nature Communications 12, no. 1 (2021): 4184.

[40]

X. Liu, K. Wang, Y. Liu, et al., “Constructing an Ion-Oriented Channel on a Zinc Electrode Through Surface Engineering,” Carbon Energy 5, no. 11 (2023): e343.

[41]

L. Zuo, Q. Ma, P. Xiao, et al., “Upgrading the Separators Integrated With Desolvation and Selective Deposition Toward the Stable Lithium Metal Batteries,” Advanced Materials 36, no. 13 (2024): 2311529.

[42]

Y. Y. Hu, R. X. Han, L. Mei, et al., “Design Principles of MoF-Related Materials for Highly Stable Metal Anodes in Secondary Metal-Based Batteries,” Materials Today Energy 19 (2021): 100608.

[43]

W. Xin, J. Xiao, J. Li, et al., “Metal-Organic Frameworks With Carboxyl Functionalized Channels as Multifunctional Ion-Conductive Interphase for Highly Reversible Zn Anode,” Energy Storage Materials 56 (2023): 76-86.

[44]

Z. Cao, H. Zhang, B. Song, et al., “Angstrom-Level Ionic Sieve 2D-MOF Membrane for High Power Aqueous Zinc Anode,” Advanced Functional Materials 33, no. 28 (2023): 2300339.

[45]

H. Ma, J. Yu, M. Chen, et al., “Amino-Enabled Desolvation Sieving Effect Realizes Dendrite-Inhibiting Thin Separator for Durable Aqueous Zinc-Ion Batteries,” Advanced Functional Materials 33, no. 52 (2023): 2307384.

[46]

D. Xu, Z. Wang, C. Liu, et al., “Water Catchers Within Sub-Nano Channels Promote Step-by-Step Zinc-Ion Dehydration Enable Highly Efficient Aqueous Zinc-Metal Batteries,” Advanced Materials 36, no. 26 (2024): 2403765.

[47]

A. K. Inge, M. Köppen, J. Su, et al., “Unprecedented Topological Complexity in a Metal-Organic Framework Constructed From Simple Building Units,” Journal of the American Chemical Society 138, no. 6 (2016): 1970-1976.

[48]

Z. Shi, J. Guo, Z. Liu, et al., “Functional Aerogel Driven Synchronous Modulation of Zn2+ Interfacial Migration Behavior and Electrolyte Microenvironment Enables Highly Reversible Zn Anodes,” Advanced Functional Materials 34 (2024): 2406568.

[49]

L. Zhang, K. Wang, and B. Zou, “Bismuth Halide Perovskite-Like Materials: Current Opportunities and Challenges,” Chemsuschem 12, no. 8 (2019): 1612-1630.

[50]

X. Tian, Q. Zhao, M. Zhou, et al., “Synergy of Dendrites-Impeded Atomic Clusters Dissociation and Side Reactions Suppressed Inert Interface Protection for Ultrastable Zn Anode,” Advanced Materials 36, no. 19 (2024): 2400237.

[51]

R. Zhao, X. Dong, P. Liang, et al., “Prioritizing Hetero-Metallic Interfaces via Thermodynamics Inertia and Kinetics Zincophilia Metrics for Tough Zn-Based Aqueous Batteries,” Advanced Materials 35, no. 17 (2023): 2209288.

[52]

L. Wang, S. Zhou, K. Yang, et al., “Screening Selection of Hydrogen Evolution-Inhibiting and Zincphilic Alloy Anode for Aqueous Zn Battery,” Advanced Science 11, no. 12 (2024): 2307667.

[53]

H. Lu, L. Liu, J. Zhang, and J. Xu, “Highly Durable Aqueous Zn Ion Batteries Based on a Zn Anode Coated by Three-Dimensional Cross-Linked and Branch-Liked Bismuth-PVDF Layer,” Journal of Colloid and Interface Science 617 (2022): 422-429.

[54]

X. Yue, L. Cheng, F. Li, J. Fan, and Q. Xiang, “Highly Strained Bi-MOF on Bismuth Oxyhalide Support With Tailored Intermediate Adsorption/Desorption Capability for Robust Co2 Photoreduction,” Angewandte Chemie International Edition 61, no. 40 (2022): e202208414.

[55]

Y. Song, P. Ruan, C. Mao, et al., “Metal-Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries,” Nano-Micro Letters 14, no. 1 (2022): 218.

[56]

C. Tian, J. Wang, R. Sun, et al., “Improved Interfacial Ion Migration and Deposition Through the Chain-Liquid Synergistic Effect by a Carboxylated Hydrogel Electrolyte for Stable Zinc Metal Anodes,” Angewandte Chemie International Edition 62, no. 42 (2023): e202310970.

[57]

M. Luo, C. Wang, H. Lu, et al., “Dendrite-Free Zinc Anode Enabled by Zinc-Chelating Chemistry,” Energy Storage Materials 41 (2021): 515-521.

[58]

Y. Liu, X. Xu, M. Sadd, et al., “Insight Into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal,” Advanced Science 8, no. 5 (2021): 2003301.

[59]

J. Zhi, S. Li, M. Han, and P. Chen, “Biomolecule-Guided Cation Regulation for Dendrite-Free Metal Anodes,” Science Advances 6, no. 32 (2020): eabb1342.

[60]

Y. Zhao, S. Guo, M. Chen, et al., “Tailoring Grain Boundary Stability of Zinc-Titanium Alloy for Long-Lasting Aqueous Zinc Batteries,” Nature Communications 14, no. 1 (2023): 7080.

[61]

X. Ni, J. Zhou, H. Ji, et al., “Excluding the Trouble From Interfacial Water by Covalent Organic Polymer to Realize Extremely Reversible Zn Anode,” Advanced Functional Materials 33, no. 37 (2023): 2302293.

[62]

Y. Li, D. Zhao, J. Cheng, et al., “A Bifunctional Nitrogen Doped Carbon Network as the Interlayer for Dendrite-Free Zn Anode,” Chemical Engineering Journal 452 (2023): 139264.

[63]

T. Li, S. Hu, C. Wang, et al., “Engineering Fluorine-Rich Double Protective Layer on Zn Anode for Highly Reversible Aqueous Zinc-Ion Batteries,” Angewandte Chemie International Edition 62, no. 51 (2023): e202314883.

[64]

W. Chen, S. Guo, L. Qin, et al., “Hydrogen Bond-Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces,” Advanced Functional Materials 32, no. 20 (2022): 2112609.

[65]

H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He, and H. Zhou, “A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries,” Advanced Materials 32, no. 38 (2020): 2004240.

[66]

S. Lv, M. Su, Z. Li, et al., “Hydrophilic-Zincophobic Separator Enabling by Crystal Structure Regulation Toward Stabilized Zn Metal Anode,” Advanced Functional Materials 34 (2024): 2315910.

[67]

M. Fu, Q. Zhao, K. Long, et al., “Global “Interface-Space” Dual-Modulation by Functional Supramolecules Organic Frameworks on Aqueous Zinc-Ion Batteries,” Advanced Functional Materials 34, no. 10 (2024): 2311680.

[68]

J. Cao, D. Zhang, X. Zhang, M. Sawangphruk, J. Qin, and R. Liu, “A Universal and Facile Approach to Suppress Dendrite Formation for a Zn and Li Metal Anode,” Journal of Materials Chemistry A 8, no. 18 (2020): 9331-9344.

[69]

Y. Sun, Q. Jian, T. Wang, et al., “A Janus Separator Towards Dendrite-Free and Stable Zinc Anodes for Long-Duration Aqueous Zinc Ion Batteries,” Journal of Energy Chemistry 81 (2023): 583-592.

[70]

C. Li, W. Wang, S. Liu, et al., “Adjusting Zinc Deposition Behaviors by a Modified Separator to Acquire Zinc Anodes for Aqueous Rechargeable Zinc-Ion Batteries,” Dalton Transactions 52, no. 36 (2023): 12869-12877.

[71]

Y. Y. Sun, L. Yan, Q. Zhang, et al., “Mixed Cellulose Ester Membrane as an Ion Redistributor to Stabilize Zinc Anode in Aqueous Zinc Ion Batteries,” Journal of Colloid and Interface Science 641 (2023): 610-618.

RIGHTS & PERMISSIONS

2024 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/