A Self-Recognition Separator for Ion Management to Customize Selective Zn2+ Channels Toward Dendrite-Free Zinc Metal Anodes
Yingbo Shao , Wen Lu , Tianyu Zhang , Bowen Yin , Bin-Bin Xie , Jiqiang Ning , Yong Hu
Carbon Energy ›› 2025, Vol. 7 ›› Issue (4) : e701
A Self-Recognition Separator for Ion Management to Customize Selective Zn2+ Channels Toward Dendrite-Free Zinc Metal Anodes
Aqueous zinc-ion batteries (ZIBs) are promising candidates for next-generation energy storage, but the problems related to Zn dendrites and side reactions severely hinder their practical applications. Herein, a self-recognition separator based on a Bi-based metal–organic framework (GF@CAU-17) is developed for ion management to achieve highly reversible Zn anodes. The GF@CAU-17 has self-recognition behavior to customize selective Zn2+ channels, effectively repelling SO42– and H2O, but facilitating Zn2+ conduction. The inherent properties of CAU-17 result in the repulsion of SO42– ions while disrupting the hydrogen bond network among free H2O molecules, restraining side reactions and by-products. Simultaneously, the zincophilic characteristic of CAU-17 expedites the desolvation of [Zn(H2O)6]2+, leading to a self-expedited Zn2+ ion pumping effect that dynamically produces a steady and homogeneous Zn2+ ion flux, and thereby alleviates concentration polarization. Consequently, a symmetric cell based on the GF@CAU-17 separator can achieve a long lifespan of 4450 h. Moreover, the constructed Zn//GF@CAU-17//MnO2 cell delivers a high specific capacity of 221.8 mAh g−1 and 88.0% capacity retention after 2000 cycles.
CAU-17 / self-recognition separator / ion management / selective Zn2+ channels / Zn anodes
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
2024 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |