Constructing Non-Commensurate Cu–C Interfaces With High Thermal Conductance via Symmetric Tilt Grain Boundaries

Haimo Li , Xiaoliang Zhang , Yanhui Feng , Xiaohua Zhang , Lin Qiu

Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70084

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70084 DOI: 10.1002/cey2.70084
RESEARCH ARTICLE

Constructing Non-Commensurate Cu–C Interfaces With High Thermal Conductance via Symmetric Tilt Grain Boundaries

Author information +
History +
PDF

Abstract

Copper–carbon (Cu–C) composites have achieved great success in various fields owing to the greatly improved electrical properties compared to pure Cu, for example, a two-order-of-magnitude increase in current-carrying capacity (ampacity). However, the frequent fuse failure caused by the poor thermal transport at the Cu–C heterointerface is still the main factor affecting the ampacity. In this study, we unconventionally leverage atomic distortion at Cu grain boundaries to alter the local atomic environments, thereby placing a premium on noticeable enhancement of phonon coupling at the Cu–C heterointerface. Without introducing any additional materials, interfacial thermal transport can be regulated solely through rational microstructural design. This new strategy effectively improves the interfacial thermal conductance by three-fold, reaching the state-of-the-art level in van der Waals (vdW) interface regulation. It can be an innovative strategy for interfacial thermal management by turning the detrimental grain boundaries into a beneficial thermal transport accelerator.

Keywords

Cu–C heterointerface / interfacial thermal conductance / phonon coupling / symmetric tilt grain boundary

Cite this article

Download citation ▾
Haimo Li, Xiaoliang Zhang, Yanhui Feng, Xiaohua Zhang, Lin Qiu. Constructing Non-Commensurate Cu–C Interfaces With High Thermal Conductance via Symmetric Tilt Grain Boundaries. Carbon Energy, 2025, 7(10): e70084 DOI:10.1002/cey2.70084

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Subramaniam, T. Yamada, K. Kobashi, et al., “One Hundred Fold Increase in Current Carrying Capacity in a Carbon Nanotube-Copper Composite,” Nature Communications 4, no. 1 (2013): 2202.

[2]

D. Liu, P. Wang, X. Zhang, et al., “Synergistically Improved Mechanical, Thermal, and Ampacity Performances of Carbon Nanotube/Copper Composite Conductors Based on Network Confinement Effects,” Carbon 201 (2023): 837-846.

[3]

Q. Guo, Y. Han, and D. Zhang, “Interface-Dominated Mechanical Behavior in Advanced Metal Matrix Composites,” Nano Materials Science 2, no. 1 (2020): 66-71.

[4]

M. Cao, D. B. Xiong, L. Yang, et al., “Ultra-High Electrical Conductivity of Graphene Embedded in Metals,” Advanced Functional Materials 29, no. 17 (2019): 1806792.

[5]

X. Zhang, D. B. Xiong, Y. Liu, et al., “Multilayer Graphene Interface Enabled Ultrahigh Extensibility for High Performance Bulk Nanostructured Copper,” Acta Materialia 267 (2024): 119710.

[6]

Y. Ku, W. Huang, X. Li, et al., “Rational Design of Diamond Through Microstructure Engineering: From Synthesis to Applications,” Carbon Energy 6, no. 7 (2024): e570.

[7]

R. Zhang, X. Wang, Z. Zhang, et al., “CuI Encapsulated Within Single-Walled Carbon Nanotube Networks With High Current Carrying Capacity and Excellent Conductivity,” Advanced Functional Materials 33, no. 41 (2023): 2301864.

[8]

C. Zhang, F. Yang, Y. Ma, et al., “Vertical Printing-Enabled Densified Graphene Scaffolds With Well-Interconnected Aligned Channels for Extraordinary Kinetics and Volumetric Capacitance,” Chemical Engineering Journal 505 (2025): 159353.

[9]

L. Zhao, T. Lee, S. Ryu, Y. Oshima, Q. Guo, and D. Zhang, “Mechanical Robustness of Metal Nanocomposites Rendered by Graphene Functionalization,” Nano Letters 21, no. 13 (2021): 5706-5713.

[10]

G. Lin, Y. Peng, Y. Li, et al., “Remarkable Anisotropic Wear Resistance With 100-Fold Discrepancy in a Copper Matrix Laminated Composite With Only 0.2 Vol% Graphene,” Acta Materialia 215 (2021): 117092.

[11]

V. Meunier, G. Bepete, M. S. Cao, et al., “Carbon Science Perspective in 2024: Current Research and Future Challenges,” Carbon 229 (2024): 119488.

[12]

Y. Cheng, B. Liu, X. Li, et al., “A High-Energy-Density Long-Cycle Lithium-Sulfur Battery Enabled by 3D Graphene Architecture,” Carbon Energy 6, no. 11 (2024): e599.

[13]

X. Zhang, W. Lu, G. Zhou, and Q. Li, “Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics,” Advanced Materials 32, no. 5 (2020): 1902028.

[14]

J. Zhang, W. Liu, M. Du, et al., “Kinetic Investigation of the Energy Storage Process in Graphene Fiber Supercapacitors: Unraveling Mechanisms, Fabrications, Property Manipulation, and Wearable Applications,” Carbon Energy 7, no. 1 (2024): e625.

[15]

H. Kashani, C. Kim, C. Rudolf, F. K. Perkins, E. R. Cleveland, and W. Kang, “An Axially Continuous Graphene-Copper Wire for High-Power Transmission: Thermoelectrical Characterization and Mechanisms,” Advanced Materials 33, no. 51 (2021): 2104208.

[16]

Y. Fang, L. Li, J. Li, et al., “Ultrafast High-Volumetric Sodium-Ion Capacitors Based on Compact Nanoarchitectured Carbon Electrodes,” Advanced Functional Materials 34, no. 48 (2024): 2408568.

[17]

Z. Yang, Y. Jia, Y. Niu, et al., “One-Step Wet-Spinning Assembly of Twisting-Structured Graphene/Carbon Nanotube Fiber Supercapacitor,” Journal of Energy Chemistry 51 (2020): 434-441.

[18]

H. Li, Z. Yong, D. Liu, et al., “Interface Engineering for High-Strength and High-Ampacity of Carbon Nanotube/Copper Composite Wires,” Carbon 219 (2024): 118845.

[19]

S. J. Kim, D. H. Shin, Y. S. Choi, et al., “Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables,” ACS Nano 12, no. 3 (2018): 2803-2808.

[20]

W. Dou, C. Zhu, X. Wu, et al., “Lightweight Diamond/Cu Interface Tuning for Outstanding Heat Conduction,” Carbon Energy 5, no. 12 (2023): e379.

[21]

L. Wang and B. Ouyang, “Phase Selection Rules of Multi-Principal Element Alloys,” Advanced Materials 36, no. 16 (2024): 2307860.

[22]

C. Liu, W. Lu, W. Xia, et al., “Massive Interstitial Solid Solution Alloys Achieve Near-Theoretical Strength,” Nature Communications 13, no. 1 (2022): 1102.

[23]

J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2,” Nature Nanotechnology 3, no. 4 (2008): 206-209.

[24]

Y. Zang, C. Di, Z. Geng, et al., “Giant Thermal Transport Tuning at a Metal/Ferroelectric Interface,” Advanced Materials 34, no. 3 (2022): 2105778.

[25]

M. Choi, J. An, H. Lee, et al., “High Figure-of-Merit for ZnO Nanostructures by Interfacing Lowly-Oxidized Graphene Quantum Dots,” Nature Communications 15, no. 1 (2024): 1996.

[26]

H. Han, Y. Zhang, N. Wang, et al., “Functionalization Mediates Heat Transport in Graphene Nanoflakes,” Nature Communications 7, no. 1 (2016): 11281.

[27]

J. H. Cho, J. J. Gorman, S. R. Na, and M. Cullinan, “Growth of Monolayer Graphene on Nanoscale Copper-Nickel Alloy Thin Films,” Carbon 115 (2017): 441-448.

[28]

L. Proville, D. Rodney, and M. C. Marinica, “Quantum Effect on Thermally Activated Glide of Dislocations,” Nature Materials 11, no. 10 (2012): 845-849.

[29]

J. Tersoff, “Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems,” Physical Review B 39, no. 8 (1989): 5566-5568.

[30]

I. L. Geada, H. Ramezani-Dakhel, T. Jamil, M. Sulpizi, and H. Heinz, “Insight Into Induced Charges at Metal Surfaces and Biointerfaces Using a Polarizable Lennard-Jones Potential,” Nature Communications 9, no. 1 (2018): 716.

[31]

Y. Tang, H. Yang, and P. Yang, “Investigation on the Contact Between Graphdiyne and Cu (111) Surface,” Carbon 117 (2017): 246-251.

[32]

Y. Ku, K. Xu, L. Yan, et al., “Revealing the Atomic Mechanism of Diamond-Iron Interfacial Reaction,” Carbon Energy 6, no. 3 (2023): e440.

[33]

X. Y. Li, Z. H. Jin, X. Zhou, and K. Lu, “Constrained Minimal-Interface Structures in Polycrystalline Copper With Extremely Fine Grains,” Science 370, no. 6518 (2020): 831-836.

[34]

M. Wu, Z. Zhang, X. Xu, et al., “Seeded Growth of Large Single-Crystal Copper Foils With High-Index Facets,” Nature 581, no. 7809 (2020): 406-410.

[35]

S. Fujii, T. Yokoi, C. A. J. Fisher, H. Moriwake, and M. Yoshiya, “Quantitative Prediction of Grain Boundary Thermal Conductivities From Local Atomic Environments,” Nature Communications 11, no. 1 (2020): 1854.

[36]

Y. Shen, J. Guo, Y. Tang, and P. Yang, “Gr/HEA-Fe NiCrCoCu Interface Getting Excellent Thermal Transport,” Intermetallics 182 (2025): 108756.

[37]

Z. Tong, S. Li, X. Ruan, and H. Bao, “Comprehensive First-Principles Analysis of Phonon Thermal Conductivity and Electron-Phonon Coupling in Different Metals,” Physical Review B 100, no. 14 (2019): 144306.

[38]

C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation,” Physical Review B 58, no. 17 (1998): 11085-11088.

[39]

Y. Shen, H. Yang, K. Cao, and P. Yang, “Interlayer Surface Modification Modulating Thermal Transport at Si/Gr/HEA Heterostructure Interfaces,” International Journal of Thermal Sciences 210 (2025): 109565.

[40]

S. Sheng, A. C. Oeter, M. Abdo, K. Lichtenberg, M. Hentschel, and S. Loth, “Launching Coherent Acoustic Phonon Wave Packets With Local Femtosecond Coulomb Forces,” Physical Review Letters 129, no. 4 (2022): 043001.

[41]

P. Hirel, “Atomsk: A Tool for Manipulating and Converting Atomic Data Files,” Computer Physics Communications 197 (2015): 212-219.

[42]

S. Plimpton, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” Journal of Computational Physics 117, no. 1 (1995): 1-19.

[43]

L. Qiu, H. Li, X. Yuan, et al., “Ultra-Efficient Heat Transport Across a ‘2.5 D’ All-Carbon sp2/sp3 Hybrid Interface,” Angewandte Chemie International Edition 64, no. 6 (2025): e202417902.

[44]

G. Ernst, C. Broholm, G. R. Kowach, and A. P. Ramirez, “Phonon Density of States and Negative Thermal Expansion in ZrW2O8,” Nature 396, no. 6707 (1998): 147-149.

[45]

X. Yan, H. Zhao, Y. Feng, et al., “Excellent Heat Transfer and Phase Transformation Performance of Erythritol/Graphene Composite Phase Change Materials,” Composites, Part B: Engineering 228 (2022): 109435.

[46]

L. Qiu, H. Li, J. Zhao, X. Zhang, Y. Feng, and X. Zhang, “Hierarchical AlN/Erythritol Composite Phase Change Materials With Ultra-Efficient Polarity-Enhanced Heat Conduction,” Cell Reports Physical Science 5, no. 11 (2024): 102297.

[47]

A. Behbahanian and N. A. Roberts, “Phonon Wave-Packet Simulations Using the Quantized Definition of Energy and a Temperature-Dependent Phonon Dispersion Relation and Phonon Density of States,” Physical Review E 103, no. 4 (2021): 043311.

[48]

H. Wang, Y. Xiong, H. Padma, et al., “Strong Electron-Phonon Coupling Driven Pseudogap Modulation and Density-Wave Fluctuations in a Correlated Polar Metal,” Nature Communications 14, no. 1 (2023): 5769.

[49]

A. Togo, L. Chaput, T. Tadano, and I. Tanaka, “Implementation Strategies in Phonopy and phono3py,” Journal of Physics: Condensed Matter 35, no. 35 (2023): 353001.

[50]

K. Sääskilahti, J. Oksanen, S. Volz, and J. Tulkki, “Frequency-Dependent Phonon Mean Free Path in Carbon Nanotubes From Nonequilibrium Molecular Dynamics,” Physical Review B 91, no. 11 (2015): 115426.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/