Dipole Polarization and Synchronous Magnetic Modulation Induced by FeN4 Moiety on Ti3C2Tx for Superior Electromagnetic Wave Absorption Performance
Xing Li , Mang Niu , Chenwei Li , Zhaozuo Zhang , Jinming Zhang , Ruoxin Sun , Jie Hou , Xiaoxia Wang
Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70078
Dipole Polarization and Synchronous Magnetic Modulation Induced by FeN4 Moiety on Ti3C2Tx for Superior Electromagnetic Wave Absorption Performance
Polarization-dependent loss is important to the highly electromagnetic wave absorption (EWA) performance. Recently, metal–Nx moieties have been discovered to trigger polarization loss, but the physical origin and other possible related loss mechanisms still need to be deeply explored. In this article, we reveal that the FeN4 moiety from iron phthalocyanine (FePc) can coordinate with Ti3C2Tx through Ti–OH groups, inducing dipole polarization and synchronous magnetic modulation in Fe/TiO2/Ti3C2Tx composites. Interestingly, using the enhanced electric dipole moment and increased number of unpaired electrons in Fe atoms, the dipole polarization loss and possible magnetic response can be rapidly confirmed and evaluated. As a result, the minimum reflection loss (RLmin) of Fe/TiO2/Ti3C2Tx composites reaches −67.12 dB at 6.72 GHz with a thickness of 3.32 mm. This study elaborates the EWA mechanism based on the atomic scale, and provides a new idea to design efficient EWA materials.
dipole polarization / electromagnetic wave / FeN4 moiety / magnetic property / Ti3C2Tx MXene
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |