Ultrastable One-Dimensional Ti2S Electride Support for an Efficient and Durable Bifunctional Electrocatalyst

Siyuan Ren , Kyoung Ryeol Park , Binod Regmi , Wooseon Choi , Yun Seong Cho , Seon Je Kim , Heechae Choi , Young-Min Kim , Joohoon Kang , Hyuksu Han , Seong-Gon Kim , Sung Wng Kim

Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70070

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70070 DOI: 10.1002/cey2.70070
RESEARCH ARTICLE

Ultrastable One-Dimensional Ti2S Electride Support for an Efficient and Durable Bifunctional Electrocatalyst

Author information +
History +
PDF

Abstract

Electrides, in which anionic electrons are trapped in structural cavities, have garnered significant attention for exceptional functionalities based on their low work function. In low-dimensional electrides, a strong quantum confinement of anionic electrons leads to many interesting phenomena, but a severe chemical instability due to their open structures is one of the major disadvantages for practical applications. Here we report that one-dimensional (1D) dititanium sulfide electride exhibits an extraordinary stability originating from the surface self-passivation and consequent durability in bifunctional electrocatalytic activity. Theoretical calculations identify the uniqueness of the 1D [Ti2S]2+·2e electride, where multiple cavities form two distinct channel structures of anionic electrons. Combined surface structure analysis and in-situ work function measurement indicate that the natural formation of amorphous titanium oxide surface layer in air is responsible for the remarkable inertness in water and pH-varied solutions. This makes the [Ti2S]2+·2e electride an ideal support for a heterogenous metal-electride hybrid catalyst, demonstrating the enhanced efficiency and superior durability in both the hydrogen evolution and oxygen reduction reactions compared to commercial Pt/C catalysts. This study will stimulate further exploratory research for developing a chemically stable electride in reactive conditions, evoking a strategy for a practical electrocatalyst for industrial energy conversions.

Keywords

electrides / electrocatalyst / electron channels / hydrogen evolution / oxygen reduction

Cite this article

Download citation ▾
Siyuan Ren, Kyoung Ryeol Park, Binod Regmi, Wooseon Choi, Yun Seong Cho, Seon Je Kim, Heechae Choi, Young-Min Kim, Joohoon Kang, Hyuksu Han, Seong-Gon Kim, Sung Wng Kim. Ultrastable One-Dimensional Ti2S Electride Support for an Efficient and Durable Bifunctional Electrocatalyst. Carbon Energy, 2025, 7(10): e70070 DOI:10.1002/cey2.70070

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. L. Dye, “Electrides: Ionic Salts With Electrons as the Anions,” Science 247, no. 4943 (1990): 663-668.

[2]

J. L. Dye, “Electrides: Early Examples of Quantum Confinement,” Accounts of Chemical Research 42, no. 10 (2009): 1564-1572.

[3]

J. L. Dye and M. G. DeBacker, “Physical and Chemical Properties of Alkalides and Electrides,” Annual Review of Physical Chemistry 38 (1987): 271-299.

[4]

K. Lee, S. W. Kim, Y. Toda, S. Matsuishi, and H. Hosono, “Dicalcium Nitride as a Two-Dimensional Electride With an Anionic Electron Layer,” Nature 494 (2013): 336-340.

[5]

Y. Toda, H. Yanagi, E. Ikenaga, et al., “Work Function of a Room-Temperature, Stable Electride [Ca24Al28O64]4+(e)4,” Advanced Materials 19, no. 21 (2007): 3564-3569.

[6]

S. H. Kang, J. Bang, K. Chung, et al., “Water- and Acid-Stable Self-Passivated Dihafnium Sulfide Electride and Its Persistent Electrocatalytic Reaction,” Science Advances 6, no. 23 (2020): eaba7416.

[7]

E. Hua, S. Choi, S. Ren, et al., “Negatively Charged Platinum Nanoparticles on Dititanium Oxide Electride for Ultra-Durable Electrocatalytic Oxygen Reduction,” Energy & Environmental Science 16, no. 10 (2023): 4464-4473.

[8]

S. Kim, J. Bang, C. Lim, et al., “Quantum Electron Liquid and Its Possible Phase Transition,” Nature Materials 21 (2022): 1269-1274.

[9]

K. Chung, J. Bang, A. Thacharon, et al., “Non-Oxidized Bare Copper Nanoparticles With Surface Excess Electrons in Air,” Nature Nanotechnology 17 (2022): 285-291.

[10]

S. S. Han, A. Thacharon, J. Kim, et al., “Boosted Heterogeneous Catalysis by Surface-Accumulated Excess Electrons of Non-Oxidized Bare Copper Nanoparticles on Electride Support,” Advanced Science 10, no. 2 (2023): 2204248.

[11]

K. P. Faseela, Y. J. Kim, S.-G. Kim, S. W. Kim, and S. Baik, “Dramatically Enhanced Stability of Silver Passivated Dicalcium Nitride Electride: Ag-Ca2N,” Chemistry of Materials 30, no. 21 (2018): 7803-7812.

[12]

S. H. Kang, D. Thapa, B. Regmi, et al., “Chemically Stable Low-Dimensional Electrides in Transition Metal-Rich Monochalcogenides: Theoretical and Experimental Explorations,” Journal of the American Chemical Society 144, no. 10 (2022): 4496-4506.

[13]

G. Chen, Y. Bai, H. Li, et al., “Multilayered Electride Ca2N Electrode via Compression Molding Fabrication for Sodium Ion Batteries,” ACS Applied Materials & Interfaces 9, no. 8 (2017): 6666-6669.

[14]

J. L. Dye, M. J. Wagner, G. Overney, R. H. Huang, T. F. Nagy, and D. Tománek, “Cavities and Channels in Electrides,” Journal of the American Chemical Society 118, no. 31 (1996): 7329-7336.

[15]

S. B. Dawes, D. L. Ward, R. H. Huang, and J. L. Dye, “First Electride Crystal Structure,” Journal of the American Chemical Society 108, no. 12 (1986): 3534-3535.

[16]

S. Matsuishi, Y. Toda, M. Miyakawa, et al., “High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e),” Science 301, no. 5633 (2003): 626-629.

[17]

S. Kanno, T. Tada, T. Utsumi, K. Nakamura, and H. Hosono, “Electronic Correlation Strength of Inorganic Electrides From First Principles,” Journal of Physical Chemistry Letters 12, no. 50 (2021): 12020-12025.

[18]

W. Meng, X. Zhang, J. Jiang, et al., “Multi-Dimensional Topological Fermions in Electrides,” Advanced Physics Research 2, no. 7 (2023): 2200119.

[19]

S. Y. Lee, J. Bang, H. Y. Song, et al., “Mixed-Cation Driven Magnetic Interaction of Interstitial Electrons for Ferrimagnetic Two-Dimensional Electride,” npj Quantum Materials 6 (2021): 21.

[20]

S. Y. Lee, J.-Y. Hwang, J. Park, et al., “Ferromagnetic Quasi-Atomic Electrons in Two-Dimensional Electride,” Nature Communications 11 (2020): 1526.

[21]

M. Hirayama, S. Matsuishi, H. Hosono, and S. Murakami, “Electrides as a New Platform of Topological Materials,” Physical Review X 8, no. 3 (2018): 031067.

[22]

C. Liu, S. A. Nikolaev, W. Ren, and L. A. Burton, “Electrides: A Review,” Journal of Materials Chemistry C 8, no. 31 (2020): 10551-10567.

[23]

Y. Lu, J. Li, T. Tada, et al., “Water Durable Electride Y5Si3: Electronic Structure and Catalytic Activity for Ammonia Synthesis,” Journal of the American Chemical Society 138, no. 12 (2016): 3970-3973.

[24]

J. Li, J. Wu, H. Wang, et al., “Acid-Durable Electride With Layered Ruthenium for Ammonia Synthesis: Boosting the Activity via Selective Etching,” Chemical Science 10, no. 22 (2019): 5712-5718.

[25]

J. E. Hatch, Aluminum: Properties and Physical Metallurgy (American Society for Metals, 1984), 242.

[26]

H. Chen, J. Yu, L. Liu, et al., “Modulating Pt-N/O Bonds on Co-Doped WO3 for Acid Electrocatalytic Hydrogen Evolution With Over 2000 h Operation,” Advanced Energy Materials 14, no. 19 (2024): 2303635.

[27]

H. Chen, Z. Gao, S. Ren, R.-T. Gao, L. Wu, and L. Wang, “Electronic Modulation of RuCo Catalysts on TiO2 Nanotubes Promoting Durable Acidic Overall Water Splitting,” Advanced Energy Materials 15, no. 9 (2025): 2403067.

[28]

T. E. Weirich, S. Hovmöller, H. Kalpen, R. Ramlau, and A. Simon, “Electron Diffraction Versus X-Ray Diffraction—A Comparative Study of the Ta2P Structure,” Crystallography Reports 43, no. 6 (1998): 1015-1026.

[29]

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

[30]

H. Idriss, “On the Wrong Assignment of the XPS O1s Signal at 531-532 eV Attributed to Oxygen Vacancies in Photo- and Electro-Catalysts for Water Splitting and Other Materials Applications,” Surface Science 712 (2021): 121894.

[31]

A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, “ELF: The Electron Localization Function,” Angewandte Chemie, International Edition in English 36, no. 17 (1997): 1808-1832.

[32]

T. Inoshita, S. Jeong, N. Hamada, and H. Hosono, “Exploration for Two-Dimensional Electrides via Database Screening and Ab Initio Calculation,” Physical Review X 4, no. 3 (2014): 031023.

[33]

Q. Zhu, T. Frolov, and K. Choudhary, “Computational Discovery of Inorganic Electrides From an Automated Screening,” Matter 1, no. 5 (2019): 1293-1303.

[34]

K. Li, Y. Gong, J. Wang, and H. Hosono, “Electron-Deficient-Type Electride Ca5Pb3: Extension of Electride Chemical Space,” Journal of the American Chemical Society 143, no. 23 (2021): 8821-8828.

[35]

K. Li, V. A. Blatov, and J. Wang, “Discovery of Electrides in Electron-Rich Non-Electride Materials via Energy Modification of Interstitial Electrons,” Advanced Functional Materials 32, no. 17 (2022): 2112198.

[36]

Y. Cao, M. A. Kirsanova, M. Ochi, et al, “Topochemical Synthesis of Ca3CrN3H Involving a Rotational Structural Transformation for Catalytic Ammonia Synthesis,” Angewandte Chemie International EditIon 61, no. 39 (2022): e202209187.

[37]

R. T. Tung, “Formation of an Electric Dipole at Metal-Semiconductor Interfaces,” Physical Review B 64, no. 20 (2001): 205310.

[38]

Y. Oh, J. Lee, J. Park, et al., “Electric Field Effect on the Electronic Structure of 2D Y2C Electride,” 2D Materials 5, no. 3 (2018): 035005.

[39]

H. Y. Song, B. I. Yoo, J.-H. Choi, et al., “Van der Waals Electride: Toward Intrinsic Two-Dimensional Ferromagnetism of Spin-Polarized Anionic Electrons,” Materials Today Physics 20 (2021): 100473.

[40]

R. R. Chianelli, J. C. Scanlon, and A. H. Thompson, “Structure Refinement of Stoichiometric TiS2,” Materials Research Bulletin 10, no. 12 (1975): 1379-1382.

[41]

M. Mizuno, I. Tanaka, and H. Adachi, “Chemical Bonding in Titanium-Metalloid Compounds,” Physical Review B 59, no. 23 (1999): 15033-15047.

[42]

S. Y. Lee, D. C. Lim, M. S. Khan, et al., “Magnetic Quasi-Atomic Electrons Driven Reversible Structural and Magnetic Transitions Between Electride and Its Hydrides,” Nature Communications 14 (2023): 5469.

[43]

D.-M. Tang, C.-L. Ren, M.-S. Wang, et al., “Mechanical Properties of Si Nanowires as Revealed by in Situ Transmission Electron Microscopy and Molecular Dynamics Simulations,” Nano Letters 12, no. 4 (2012): 1898-1904.

[44]

T. Yokota, M. Murayama, and J. M. Howe, “In Situ Transmission-Electron-Microscopy Investigation of Melting in Submicron Al-Si Alloy Particles under Electron-Beam Irradiation,” Physical Review Letters 91, no. 26 (2003): 265504.

[45]

F. Frati, M. O. J. Y. Hunault, and F. M. F. de Groot, “Oxygen K-Edge X-Ray Absorption Spectra,” Chemical Reviews 120, no. 9 (2020): 4056-4110.

[46]

C. Wang, M. Xu, K. T. Butler, and L. A. Burton, “Ultralow Work Function of the Electride Sr3CrN3,” Physical Chemistry Chemical Physics 24, no. 15 (2022): 8854-8858.

[47]

S. K. Ravi, W. Sun, D. K. Nandakumar, Y. Zhang, and S. C. Tan, “Optical Manipulation of Work Function Contrasts on Metal Thin Films,” Science Advances 4, no. 3 (2018): eaao6050.

[48]

X. Wang, J. Dan, Z. Hu, et al., “Defect Heterogeneity in Monolayer WS2 Unveiled by Work Function Variance,” Chemistry of Materials 31, no. 19 (2019): 7970-7978.

[49]

S. Okeil, S. Yadav, M. Bruns, A. Zintler, L. Molina-Luna, and J. J. Schneider, “Photothermal Catalytic Properties of Layered Titanium Chalcogenide Nanomaterials,” Dalton Transactions 49, no. 4 (2020): 1032-1047.

[50]

X. Zeng, D. Duan, X. Zhang, et al., “Doping and Interface Engineering in a Sandwich Ti3C2Tx/MoS2−xPx Heterostructure for Efficient Hydrogen Evolution,” Journal of Materials Chemistry C 10, no. 11 (2022): 4140-4147.

[51]

J. H. K. Pfisterer, Y. Liang, O. Schneider, and A. S. Bandarenka, “Direct Instrumental Identification of Catalytically Active Surface Sites,” Nature 549 (2017): 74-77.

[52]

Z. Zhang, Y. Chen, L. Zhou, et al., “The Simplest Construction of Single-Site Catalysts by the Synergism of Micropore Trapping and Nitrogen Anchoring,” Nature Communications 10 (2019): 1657.

[53]

H.-S. Oh and H. Kim, “Efficient Synthesis of Pt Nanoparticles Supported on Hydrophobic Graphitized Carbon Nanofibers for Electrocatalysts Using Noncovalent Functionalization,” Advanced Functional Materials 21, no. 20 (2011): 3954-3960.

[54]

G. N. Derry and Z. Ji-Zhong, “Work Function of Pt(111),” Physical Review B 39, no. 3 (1989): 1940-1941.

[55]

K. Panigrahi, S. Mal, and S. Bhattacharyya, “Deciphering Interfacial Charge Transfer Mechanisms in Electrochemical Energy Systems Through Impedance Spectroscopy,” Journal of Materials Chemistry A 12, no. 24 (2024): 14334-14353.

[56]

J. Liu, Y. Liu, D. Xu, et al., “Hierarchical ʻNanorollʼ Like MoS2/Ti3C2Tx Hybrid With High Electrocatalytic Hydrogen Evolution Activity,” Applied Catalysis, B: Environmental 241 (2019): 89-94.

[57]

Z. Cui, P. Zhao, H. Wang, C. Li, W. Peng, and J. Liu, “Tandem Effect Promotes MXene-Supported Dual-Site Janus Nanoparticles for High-Efficiency Nitrate Reduction to Ammonia and Energy Output Through Zn-Nitrate Battery,” Advanced Functional Materials 34, no. 52 (2024): 2410941.

[58]

Z. Cui, H. Wang, C. Li, W. Peng, and J. Liu, “Three Birds With One Stone: Electrocatalytic C-N Coupling for Carbon Neutrality, Nitrogen Resource Utilization, and Urea Synthesis,” Renewable and Sustainable Energy Reviews 205 (2024): 114822.

[59]

Z. Cui, P. Zhao, H. Wang, et al., “Molten Salts Etching Strategy Construct Alloy/MXene Heterostructures for Efficient Ammonia Synthesis and Energy Supply via Zn-Nitrite Battery,” Applied Catalysis B: Environment and Energy 348 (2024): 123862.

[60]

R. Guo, Z. Cui, T. Yu, J. Li, W. Peng, and J. Liu, “Bimetal Anchoring Porous MXene Nanosheets for Driving Tandem Catalytic High-Efficiency Electrochemical Nitrate Reduction,” AIChE Journal 71, no. 2 (2025): e18628.

[61]

Z. Cui, C. Li, W. Peng, and J. Liu, “Emerging MXene-Based Electrocatalysts for Efficient Nitrate Reduction to Ammonia: Recent Advance, Challenges, and Prospects,” Energy Materials 4 (2024): 400057.

[62]

J. Liu, T. Chen, P. Juan, et al., “Hierarchical Cobalt Borate/MXenes Hybrid With Extraordinary Electrocatalytic Performance in Oxygen Evolution Reaction,” ChemSusChem 11, no. 21 (2018): 3758-3765.

[63]

M. Bele, P. Jovanovič, Ž. Marinko, et al., “Increasing the Oxygen-Evolution Reaction Performance of Nanotubular Titanium Oxynitride-Supported Ir Nanoparticles by a Strong Metal-Support Interaction,” ACS Catalysis 10, no. 22 (2020): 13688-13700.

[64]

X. Jia, Z. Yu, F. Liu, et al., “Identifying Stable Electrocatalysts Initialized by Data Mining: Sb2WO6 for Oxygen Reduction,” Advanced Science 11, no. 5 (2024): 2305630.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/