Synergistic Effect of Bio-Inspired Microenvironment Modulation and Catalytic Site Design Enhances the Oxygen Evolution Performance of Copper-Phenanthroline Catalysts

Mu-Han Zhou , Tao Zheng , Rui-Qi Li , Yi-Lin Xie , Gui-Lin Ruan , Fentahun Wondu Dagnaw , Xu-Bing Li , Zhi-Xing Wu , Qing-Xiao Tong , Jing-Xin Jian

Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70063

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70063 DOI: 10.1002/cey2.70063
RESEARCH ARTICLE

Synergistic Effect of Bio-Inspired Microenvironment Modulation and Catalytic Site Design Enhances the Oxygen Evolution Performance of Copper-Phenanthroline Catalysts

Author information +
History +
PDF

Abstract

Copper complexes inspired by O2-activating enzymes have been widely investigated as molecular water oxidation catalysts, capable of facile and reversible O─O bond formation and cleavage under mild conditions. In this study, two copper phenanthroline complexes, namely, Cu(phen) and Cu(dophen), exhibit high turnover frequencies (TOFs) of 74 ± 13 and (5.66 ± 0.29) × 103 s−1 for water oxidation, respectively. Moreover, amino acid-functionalized carbon dots (CDs) were used to support the adhesion of the [Cu] complexes onto the electrode, significantly enhancing the TOFs of (2.80 ± 0.12) × 103 and (4.11 ± 0.24) × 104 s−1, respectively, exceeding the activity of photosystem II in nature. Remarkably, the amino acid-functionalized CDs provide a secondary sphere that mimics the catalytic microenvironment of the copper centre, which promotes proton-coupled electron transfer and O─O bond formation. Finally, the photovoltaic-electrolysis (PVE) system was established using CDs-supported Cu catalysts and commercial silicon solar panels, achieving a high solar-to-hydrogen efficiency of 11.59% under the illumination of AM 1.5 G. This represents the most efficient solar-driven water splitting system based on copper-based catalysts to date, introducing the biomimetic secondary sphere to a “proton-rocking” process for water oxidation catalysis and application of the PVE system.

Keywords

carbon dots / copper complex / photovoltaic-electrolysis / solar conversion / water splitting

Cite this article

Download citation ▾
Mu-Han Zhou, Tao Zheng, Rui-Qi Li, Yi-Lin Xie, Gui-Lin Ruan, Fentahun Wondu Dagnaw, Xu-Bing Li, Zhi-Xing Wu, Qing-Xiao Tong, Jing-Xin Jian. Synergistic Effect of Bio-Inspired Microenvironment Modulation and Catalytic Site Design Enhances the Oxygen Evolution Performance of Copper-Phenanthroline Catalysts. Carbon Energy, 2025, 7(10): e70063 DOI:10.1002/cey2.70063

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. D. Kärkäs, O. Verho, E. V. Johnston, and B. Åkermark, “Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation,” Chemical Reviews 114, no. 24 (2014): 11863-12001.

[2]

J. D. Blakemore, R. H. Crabtree, and G. W. Brudvig, “Molecular Catalysts for Water Oxidation,” Chemical Reviews 115, no. 23 (2015): 12974-13005.

[3]

C. C. L. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, and T. F. Jaramillo, “Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices,” Journal of the American Chemical Society 137, no. 13 (2015): 4347-4357.

[4]

B. Zhang and L. Sun, “Artificial Photosynthesis: Opportunities and Challenges of Molecular Catalysts,” Chemical Society Reviews 48, no. 7 (2019): 2216-2264.

[5]

Y. J. Chen, J. Z. Zhang, Z. X. Wu, et al., “Inside Back Cover: Molecular Engineering of Perylene Diimide Polymers With a Robust Built-In Electric Field for Enhanced Solar-Driven Water Splitting (Angew. Chem. Int. Ed. 8/2024),” Angewandte Chemie International Edition 63, no. 8 (2024): e202318224.

[6]

M. Suga, F. Akita, K. Hirata, et al., “Native Structure of Photosystem II at 1.95 Å Resolution Viewed by Femtosecond X-Ray Pulses,” Nature 517, no. 7532 (2015): 99-103.

[7]

K. Kawashima, T. Takaoka, H. Kimura, K. Saito, and H. Ishikita, “O2 Evolution and Recovery of the Water-Oxidizing Enzyme,” Nature Communications 9, no. 1 (2018): 1247-1258.

[8]

L. H. Zhang, S. Mathew, J. Hessels, J. N. H. Reek, and F. Yu, “Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation,” Chemsuschem 14, no. 1 (2021): 234-250.

[9]

H. A. Chu, A. P. Nguyen, and R. J. Debus, “Amino Acid Residues That Influence the Binding of Manganese or Calcium to Photosystem II. 1. The Lumenal Interhelical Domains of the D1 Polypeptide,” Biochemistry 34, no. 17 (1995): 5839-5858.

[10]

C. W. Hoganson and G. T. Babcock, “A Metalloradical Mechanism for the Generation of Oxygen From Water in Photosynthesis,” Science 277, no. 5334 (1997): 1953-1956.

[11]

A. M. A. Hays, I. R. Vassiliev, J. H. Golbeck, and R. J. Debus, “Role of D1-His190 in the Proton-Coupled Oxidation of Tyrosine YZ in Manganese-Depleted Photosystem II,” Biochemistry 38, no. 37 (1999): 11851-11865.

[12]

C. Tommos and G. T. Babcock, “Proton and Hydrogen Currents in Photosynthetic Water Oxidation,” Biochimica et Biophysica Acta (BBA)-Bioenergetics 1458, no. 1 (2000): 199-219.

[13]

Y. Umena, K. Kawakami, J. R. Shen, and N. Kamiya, “Crystal Structure of Oxygen-Evolving Photosystem II at a Resolution of 1.9 Å,” Nature 473, no. 7345 (2011): 55-60.

[14]

X. Liu, H. Zheng, Z. Sun, A. Han, and P. Du, “Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation,” ACS Catalysis 5, no. 3 (2015): 1530-1538.

[15]

L. Duan, L. Wang, F. Li, F. Li, and L. Sun, “Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts With Negatively Charged Backbone Ligands,” Accounts of Chemical Research 48, no. 7 (2015): 2084-2096.

[16]

S. M. Adam, G. B. Wijeratne, P. J. Rogler, et al., “Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function,” Chemical Reviews 118, no. 22 (2018): 10840-11022.

[17]

M. Kondo, H. Tatewaki, and S. Masaoka, “Design of Molecular Water Oxidation Catalysts With Earth-Abundant Metal Ions,” Chemical Society Reviews 50, no. 12 (2021): 6790-6831.

[18]

J. Li, C. A. Triana, W. Wan, et al., “Molecular and Heterogeneous Water Oxidation Catalysts: Recent Progress and Joint Perspectives,” Chemical Society Reviews 50, no. 4 (2021): 2444-2485.

[19]

H. T. Zhang, X. J. Su, F. Xie, R. Z. Liao, and M. T. Zhang, “Iron-Catalyzed Water Oxidation: O-O Bond Formation via Intramolecular Oxo-Oxo Interaction,” Angewandte Chemie International Edition 60, no. 22 (2021): 12467-12474.

[20]

Y. F. Su, W. Z. Luo, W. Q. Lin, et al., “A Water-Soluble Highly Oxidizing Cobalt Molecular Catalyst Designed for Bioinspired Water Oxidation,” Angewandte Chemie International Edition 61, no. 20 (2022): e202201430.

[21]

P. H. van Langevelde, E. Kounalis, L. Killian, E. C. Monkcom, D. Broere, and D. Hetterscheid, “Mechanistic Investigations Into the Selective Reduction of Oxygen by a Multicopper Oxidase T3 Site-Inspired Dicopper Complex,” ACS Catalysis 13, no. 8 (2023): 5712-5722.

[22]

D. Rokhsana, D. M. Dooley, and R. K. Szilagyi, “Systematic Development of Computational Models for the Catalytic Site in Galactose Oxidase: Impact of Outer-Sphere Residues on the Geometric and Electronic Structures,” JBIC, Journal of Biological Inorganic Chemistry 13, no. 3 (2008): 371-383.

[23]

L. S. Mydy, D. N. Chigumba, and R. D. Kersten, “Plant Copper Metalloenzymes as Prospects for New Metabolism Involving Aromatic Compounds,” Frontiers in Plant Science 12 (2021): 692108.

[24]

J. Meng, H. Qin, H. Lei, et al., “Adapting Synthetic Models of Heme/Cu Sites to Energy-Efficient Electrocatalytic Oxygen Reduction Reaction,” Angewandte Chemie International Edition 62, no. 51 (2023): e202312255.

[25]

G. C. Sedenho, S. Q. Nascimento, M. Zamani, F. N. Crespilho, and A. L. Furst, “Secondary Structure in Enzyme-Inspired Polymer Catalysts Impacts Water Oxidation Efficiency,” Advanced Science 11, no. 25 (2024): 2402234.

[26]

M. T. Zhang, Z. Chen, P. Kang, and T. J. Meyer, “Electrocatalytic Water Oxidation With a Copper(II) Polypeptide Complex,” Journal of the American Chemical Society 135, no. 6 (2013): 2048-2051.

[27]

T. Zhang, C. Wang, S. Liu, J. L. Wang, and W. Lin, “A Biomimetic Copper Water Oxidation Catalyst With Low Overpotential,” Journal of the American Chemical Society 136, no. 1 (2014): 273-281.

[28]

X. J. Su, M. Gao, L. Jiao, et al., “Electrocatalytic Water Oxidation by a Dinuclear Copper Complex in a Neutral Aqueous Solution,” Angewandte Chemie International Edition 54, no. 16 (2015): 4909-4914.

[29]

J. S. Pap, Ł. Szyrwiel, D. Srankó, et al., “Electrocatalytic Water Oxidation by CuII Complexes With Branched Peptides,” Chemical Communications 51, no. 29 (2015): 6322-6324.

[30]

S. J. Koepke, K. M. Light, P. E. VanNatta, K. M. Wiley, and M. T. Kieber-Emmons, “Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms,” Journal of the American Chemical Society 139, no. 25 (2017): 8586-8600.

[31]

L. A. Stott, K. E. Prosser, E. K. Berdichevsky, C. J. Walsby, and J. J. Warren, “Lowering Water Oxidation Overpotentials Using the Ionisable Imidazole of Copper(2-(2'-Pyridyl)Imidazole),” Chemical Communications 53, no. 3 (2017): 651-654.

[32]

Q. Q. Hu, X. J. Su, and M. T. Zhang, “Electrocatalytic Water Oxidation by an Unsymmetrical Di-Copper Complex,” Inorganic Chemistry 57, no. 17 (2018): 10481-10484.

[33]

Y. Liu, Y. Han, Z. Zhang, et al., “Low Overpotential Water Oxidation at Neutral Ph Catalyzed by a Copper (II) Porphyrin,” Chemical Science 10, no. 9 (2019): 2613-2622.

[34]

J. M. Wang, Y. R. Liu, X. Y. Mao, et al., “Two Trinuclear CuII Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation,” Chemistry - An Asian Journal 14, no. 15 (2019): 2685-2693.

[35]

P. Garrido Barros, D. Moonshiram, M. Gil Sepulcre, et al., “Redox Metal-Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH With Macrocyclic Copper Complexes,” Journal of the American Chemical Society 142, no. 41 (2020): 17434-17446.

[36]

M. Gil-Sepulcre, P. Garrido-Barros, J. Oldengott, et al., “Consecutive Ligand-Based Electron Transfer in New Molecular Copper-Based Water Oxidation Catalysts,” Angewandte Chemie International Edition 60, no. 34 (2021): 18639-18644.

[37]

A. M. Geer, C. Musgrave, C. Webber, et al., “Electrocatalytic Water Oxidation by a Trinuclear Copper(II) Complex,” ACS Catalysis 11, no. 12 (2021): 7223-7240.

[38]

Q. X. Bai, X. L. Yang, S. K. Zheng, et al., “Efficient Electrochemical Water Oxidation Mediated by a Binuclear Copper Complex With a Helical Structure,” Sustainable Energy & Fuels 6, no. 15 (2022): 3643-3648.

[39]

S. M. Barnett, K. I. Goldberg, and J. M. Mayer, “A Soluble Copper-Bipyridine Water-Oxidation Electrocatalyst,” Nature Chemistry 4, no. 6 (2012): 498-502.

[40]

X. Jiang, J. Li, B. Yang, et al., “A Bio-Inspired Cu4O4 Cubane: Effectivemolecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution,” Angewandte Chemie International Edition 57, no. 26 (2018): 7850-7854.

[41]

Q. F. Chen, Z. Y. Cheng, R. Z. Liao, and M. T. Zhang, “Bioinspired Trinuclear Copper Catalyst for Water Oxidation With a Turnover Frequency up to 20000 s−1,” Journal of the American Chemical Society 143, no. 47 (2021): 19761-19768.

[42]

Z. Geng, Y. Sun, Y. Zhang, et al., “Architecture of Biomimetic Water Oxidation Catalyst With Mn4CaO5 Clusterlike Structure Unit,” ACS Applied Materials & Interfaces 10, no. 44 (2018): 37948-37954.

[43]

G. Ruan, P. Ghosh, N. Fridman, and G. Maayan, “A Di-Copper-Peptoid in a Noninnocent Borate Buffer as a Fast Electrocatalyst for Homogeneous Water Oxidation With Low Overpotential,” Journal of the American Chemical Society 143, no. 28 (2021): 10614-10623.

[44]

J. X. Jian, Q. Liu, Z. J. Li, et al., “Chitosan Confinement Enhances Hydrogen Photogeneration From a Mimic of the Diiron Subsite of [FeFe]-Hydrogenase,” Nature Communications 4 (2013): 2695.

[45]

F. Wang, W. J. Liang, J. X. Jian, et al., “Exceptional Poly(Acrylic Acid)-Based Artificial [FeFe]-Hydrogenases for Photocatalytic H2 Production in Water,” Angewandte Chemie International Edition 52, no. 31 (2013): 8134-8138.

[46]

Y. Zhai, B. Zhang, R. Shi, et al., “Carbon Dots as New Building Blocks for Electrochemical Energy Storage and Electrocatalysis,” Advanced Energy Materials 12, no. 6 (2022): 2103426.

[47]

C. Yan, L. Guo, X. Shao, et al., “Amino Acid-Functionalized Carbon Quantum Dots for Selective Detection of Al3+ Ions and Fluorescence Imaging in Living Cells,” Analytical and Bioanalytical Chemistry 413, no. 15 (2021): 3965-3974.

[48]

H. Hofmeier and U. S. Schubert, “Recent Developments in the Supramolecular Chemistry of Terpyridine-Metal Complexes,” Chemical Society Reviews 33, no. 6 (2004): 373-399.

[49]

J. X. Jian, J. X. Liao, M. H. Zhou, et al., “Enhanced Photoelectrochemical Water Splitting of Black Silicon Photoanode With pH-Dependent Copper-Bipyridine Catalysts,” Chemistry - A European Journal 28, no. 57 (2022): e202201520.

[50]

M. H. Zhou, J. Y. Lin, W. P. Zhang, et al., “Solar-Driven Water Splitting in Photovoltaic Electrolysis Systems Using Copper Terpyridine Complexes as Oxygen Evolution Catalysts,” Solar RRL 7, no. 6 (2023): 2201018.

[51]

P. Huang, M. Z. Li, C. F. Wen, H. Y. Zhou, J. X. Jian, and Q. X. Tong, “Nitrogen-Doped Carbon Dots for Efficient Deep-Blue Light-Emitting Diodes With CIE Closely Approaching the HDTV Standard Color Rec.Bt.709,” Chemical Communications 59, no. 58 (2023): 8933-8936.

[52]

P. Huang, J. R. Yu, M. Z. Li, et al., “Engineering Rhombus Carbon Quantum Dots for High-Performance Deep-Blue LEDs With External Quantum Efficiency Exceeding 4.5%,” ACS Sustainable Chemistry & Engineering 11, no. 27 (2023): 10041-10050.

[53]

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Chapter: Theory of Normal Vibrations (John Wiley and Sons, 2008), 1-147.

[54]

A. Gaur, W. Klysubun, N. Nitin Nair, B. D. Shrivastava, J. Prasad, and K. Srivastava, “XAFS Study of Copper(II) Complexes With Square Planar and Square Pyramidal Coordination Geometries,” Journal of Molecular Structure 1118 (2016): 212-218.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/