Mesoporous Silica-Based Photocatalytic Materials for Solar Energy Storage and Utilization

Rui Sun , Yaqi Wu , Ning Han , Liang Chen , Zhangxing Chen , Heng Zhao

Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70054

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70054 DOI: 10.1002/cey2.70054
REVIEW

Mesoporous Silica-Based Photocatalytic Materials for Solar Energy Storage and Utilization

Author information +
History +
PDF

Abstract

The efficient storage and application of sustainable solar energy has drawn significant attention from both academic and industrial points of view. However, most developed catalytic materials still suffer from insufficient mass diffusion and unsatisfactory durability due to the lack of interconnected and regulatable porosity. Developing catalytic architectures with engineered active sites and prominent stability through rational synthesis strategies has become one of the core projects in solar-driven applications. The unique properties of mesoporous silicas render them among the most valuable functional materials for industrial applications, such as high specific surface area, regulatable porosity, adjustable surface properties, tunable particle sizes, and great thermal and mechanical stability. Mesoporous silicas serve as structural templates or catalytic supports to enhance light harvesting via the scattering effect and provide large surface areas for active site generation. These advantages have been widely utilized in solar applications, including hydrogen production, CO2 conversion, photovoltaics, biomass utilization, and pollutant degradation. To achieve the specific functionalities and desired activity, various types of mesoporous silicas from different synthesis methods have been customized and synthesized. Moreover, morphology regulation and component modification strategies have also been performed to endow mesoporous silica-based materials with unprecedented efficiency for solar energy storage and utilization. Nevertheless, reviews about synthesis, morphology regulation, and component modification strategies for mesoporous silica-based catalyst design in solar-driven applications are still limited. Herein, the latest progress concerning mesoporous silica-based catalysis in solar-driven applications is comprehensively reviewed. Synthesis principles, formation mechanisms, and rational functionalities of mesoporous silica are systematically summarized. Some typical catalysts with impressive activities in different solar-driven applications are highlighted. Furthermore, challenges and future potential opportunities in this study field are also discussed and proposed. This present review guides the design of mesoporous silica catalysts for efficient solar energy management for solar energy storage and conversion applications.

Keywords

applications / mesoporous silicas / modification / photocatalytic materials / synthesis

Cite this article

Download citation ▾
Rui Sun, Yaqi Wu, Ning Han, Liang Chen, Zhangxing Chen, Heng Zhao. Mesoporous Silica-Based Photocatalytic Materials for Solar Energy Storage and Utilization. Carbon Energy, 2025, 7(10): e70054 DOI:10.1002/cey2.70054

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Li, W. Zhu, C. Li, T. Wang, and J. Gong, “Rational Design of Yolk-Shell Nanostructures for Photocatalysis,” Chemical Society Reviews 48, no. 7 (2019): 1874-1907.

[2]

M. Ma, J. Li, X. Zhu, et al., “Enhancing Multifunctional Photocatalysis With Acetate-Assisted Cesium Doping and Unlocking the Potential of Z-Scheme Solar Water Splitting,” Carbon Energy 6, no. 3 (2024): e447.

[3]

C. Wang, Y. Ding, Y. Wang, et al., “Metal Halide Perovskites for Solar-to-Chemical Energy Conversion in Aqueous Media,” Carbon Energy 6, no. 11 (2024): e500.

[4]

R. T. A. Tirumala, S. Gyawali, A. Wheeler, et al., “Structure-Property-Performance Relationships of Cuprous Oxide Nanostructures for Dielectric Mie Resonance-Enhanced Photocatalysis,” ACS Catalysis 12, no. 13 (2022): 7975-7985.

[5]

W. Chen, X. Han, M. Xu, T. Bai, and B. Li, “Water/Oil Interfacial Photocatalysis of Amphiphilic CdS/Bi2WO6 S-Scheme Heterojunctions for Efficient Production and Spontaneous Separation of H2O2 and Value-Added Organics,” Journal of Environmental Chemical Engineering 12, no. 6 (2024): 114349.

[6]

E. Palma Soto, C. A. Rodriguez Gonzalez, P. A. Luque Morales, H. Reyes Blas, and A. Carrillo Castillo, “Degradation of Organic Dye Congo Red by Heterogeneous Solar Photocatalysis With Bi2S3, Bi2S3/TiO2, and Bi2S3/ZnO Thin Films,” Catalysts 14, no. 9 (2024): 589.

[7]

W. Chen, X. Zhao, Q. Zeng, et al., “Synergy of S Doping and Defect Construction in Holey Ultra-Thin g-C3N4 Nanosheets for Improved Photocatalytic Hydrogen Production From Water,” Fuel 381 (2025): 133329.

[8]

J. Lan, S. Qu, X. Ye, et al., “Core-Shell Semiconductor-Graphene Nanoarchitectures for Efficient Photocatalysis: State of the Art and Perspectives,” Nano-Micro Letters 16, no. 1 (2024): 280.

[9]

K. Cao, C. Zhang, and J. Zhang, “Dynamic Structural Twist in Metal-Organic Framework Twists the Clockwork Spring of Photocatalytic Overall Water Splitting,” Chemical Synthesis 5, no. 1 (2025): 13.

[10]

T. Ranganathan and I. Selwynraj Arunodayaraj, “Disintegration of Lignocellulosic Material Through Visible Light SiO2/g-C3N4 Photocatalyst for Biogas Generation,” Journal of the Indian Chemical Society 101, no. 11 (2024): 101371.

[11]

J. Tang, X. Wang, Y. Huang, et al., “Hydroxylated SiO2-Modified {0 0 1}-TiO2 Nanosheets as a Surface Multifunctional Photocatalyst for Enhanced Degradation of Gaseous Toluene,” Chemical Engineering Journal 499 (2024): 156055.

[12]

X. Zuo, S. Zou, J. Wu, B. Ding, and A. Jiang, “Simulated Sunlight-Driven Photocatalytic Activation of Peroxydisulfate by Core-Shell Ag@SiO2/TiO2 Nanocomposite for Efficient Methyl Orange Degradation,” Desalination and Water Treatment 320 (2024): 100806.

[13]

W. Ren, J. Yang, J. Zhang, et al., “Recent Progress in SnO2/g-C3N4 Heterojunction Photocatalysts: Synthesis, Modification, and Application,” Journal of Alloys and Compounds 906 (2022): 164372.

[14]

M. Inada, N. Enomoto, and J. Hojo, “Fabrication and Structural Analysis of Mesoporous Silica-Titania for Environmental Purification,” Microporous and Mesoporous Materials 182 (2013): 173-177.

[15]

C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature 359, no. 6397 (1992): 710-712.

[16]

M. Anpo, H. Yamashita, K. Ikeue, et al., “Photocatalytic Reduction of CO2 With H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts,” Catalysis Today 44, no. 1-4 (1998): 327-332.

[17]

X. Fang, C. Chen, Z. Liu, P. Liu, and N. Zheng, “A Cationic Surfactant Assisted Selective Etching Strategy to Hollow Mesoporous Silica Spheres,” Nanoscale 3, no. 4 (2011): 1632-1639.

[18]

S. Che, A. E. Garcia-Bennett, T. Yokoi, et al., “A Novel Anionic Surfactant Templating Route for Synthesizing Mesoporous Silica With Unique Structure,” Nature Materials 2, no. 12 (2003): 801-805.

[19]

D. Zhao, J. Feng, Q. Huo, et al., “Triblock Copolymer Syntheses of Mesoporous Silica With Periodic 50 to 300 Angstrom Pores,” Science 279, no. 5350 (1998): 548-552.

[20]

B. Sun, G. Zhou, and H. Zhang, “Synthesis, Functionalization, and Applications of Morphology-Controllable Silica-Based Nanostructures: A Review,” Progress in Solid State Chemistry 44, no. 1 (2016): 1-19.

[21]

C. M. Yang and K. J. Chao, “Functionalization of Molecularly Templated Mesoporous Silica,” Journal of the Chinese Chemical Society 49, no. 5 (2002): 883-893.

[22]

O. El Atti, J. Hot, K. Fajerwerg, et al., “Synthesis of TiO2/SBA-15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement,” Inorganics 12, no. 7 (2024): 183.

[23]

Y. Dai, C. Poidevin, C. Ochoa-Hernández, A. A. Auer, and H. Tüysüz, “A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C-H Bond Activation,” Angewandte Chemie International Edition 59, no. 14 (2020): 5788-5796.

[24]

X. Wan, J. Wang, D. Wang, Q. Xu, F. Xie, and Q. Qu, “Confined Growth of TiO2 Nanoclusters Inside Mesopores of Core-Shell Silica Spheres With High Loading as Efficient Photocatalysts,” Journal of Materials Science 57, no. 36 (2022): 17277-17290.

[25]

D. Kudaibergen, G. Y. Kim, H.-S. Choe, et al., “Highly Uniform Platinum Photodeposited Hollow Mesoporous Titania Nanoparticles for Photocatalytic Degradation of Phenol,” Environmental Science: Nano 11, no. 8 (2024): 3487-3498.

[26]

A. Wang, Y. Ma, and D. Zhao, “Pore Engineering of Porous Materials: Effects and Applications,” ACS Nano 18, no. 34 (2024): 22829-22854.

[27]

Z. Zhao, X. Wang, Z. Shu, et al., “Facile Preparation of Hollow-Nanosphere Based Mesoporous g-C3N4 for Highly Enhanced Visible-Light-Driven Photocatalytic Hydrogen Evolution,” Applied Surface Science 455 (2018): 591-598.

[28]

H. Wang, Q. Tang, Z. Chen, T. Li, and J. Wang, “Recent Advances on Silica-Based Nanostructures in Photocatalysis,” Science China Materials 63, no. 11 (2020): 2189-2205.

[29]

W. Zhu, Z. Chen, Y. Pan, et al., “Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction,” Advanced Materials 31, no. 38 (2019): 1800426.

[30]

Y. Zheng, H. Geng, Y. Zhang, L. Chen, and C. C. Li, “Precursor-Based Synthesis of Porous Colloidal Particles Towards Highly Efficient Catalysts,” Chemistry 24, no. 41 (2018): 10280-10290.

[31]

C. Dong, J. Ji, Z. Yang, Y. Xiao, M. Xing, and J. Zhang, “Research Progress of Photocatalysis Based on Highly Dispersed Titanium in Mesoporous SiO2,” Chinese Chemical Letters 30, no. 4 (2019): 853-862.

[32]

E.-Y. Jeong and S.-E. Park, “Synthesis of Porphyrin-Bridged Periodic Mesoporous Organosilica and Their Catalytic Applications,” Research on Chemical Intermediates 38, no. 6 (2012): 1237-1248.

[33]

B. Singh, J. Na, M. Konarova, et al., “Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications,” Bulletin of the Chemical Society of Japan 93, no. 12 (2020): 1459-1496.

[34]

P. Verma, Y. Kondo, Y. Kuwahara, et al., “Design and Application of Photocatalysts Using Porous Materials,” Catalysis Reviews 63, no. 2 (2021): 165-233.

[35]

T. Kamegawa, A. Mizuno, and H. Yamashita, “Hydrophobic Modification of SO3H-Functionalized Mesoporous Silica and Investigations on the Enhanced Catalytic Performance,” Catalysis Today 243 (2015): 153-157.

[36]

J. E. Lim, C. B. Shim, J. M. Kim, B. Y. Lee, and J. E. Yie, “Dehydroxylation Route to Surface Modification of Mesoporous Silicas by Using Grignard Reagents,” Angewandte Chemie International Edition 43, no. 29 (2004): 3839-3842.

[37]

D. Kwon, B. G. Cha, Y. Cho, et al., “Extra-Large Pore Mesoporous Silica Nanoparticles for Directing In Vivo M2 Macrophage Polarization by Delivering IL-4,” Nano Letters 17, no. 5 (2017): 2747-2756.

[38]

H.-S. Shin, Y.-K. Hwang, and S. Huh, “Facile Preparation of Ultra-Large Pore Mesoporous Silica Nanoparticles and Their Application to the Encapsulation of Large Guest Molecules,” ACS Applied Materials & Interfaces 6, no. 3 (2014): 1740-1746.

[39]

D. Shen, J. Yang, X. Li, et al., “Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres,” Nano Letters 14, no. 2 (2014): 923-932.

[40]

P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, “Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds,” Nature 368, no. 6469 (1994): 321-323.

[41]

K. Cassiers, T. Linssen, M. Mathieu, et al., “A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas,” Chemistry of Materials 14, no. 5 (2002): 2317-2324.

[42]

S. A. Bagshaw, E. Prouzet, and T. J. Pinnavaia, “Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants,” Science 269, no. 5228 (1995): 1242-1244.

[43]

R. Ryoo, J. M. Kim, C. H. Ko, and C. H. Shin, “Disordered Molecular Sieve With Branched Mesoporous Channel Network,” Journal of Physical Chemistry 100, no. 45 (1996): 17718-17721.

[44]

C. Yu, Y. Yu, and D. Zhao, “Highly Ordered Large Caged Cubic Mesoporous Silica Structures Templated by Triblock PEO-PBO-PEO Copolymer,” Chemical Communications no. 7 (2000): 575-576.

[45]

N. B. Lihitkar, M. K. Abyaneh, V. Samuel, R. Pasricha, S. W. Gosavi, and S. K. Kulkarni, “Titania Nanoparticles Synthesis in Mesoporous Molecular Sieve MCM-41,” Journal of Colloid and Interface Science 314, no. 1 (2007): 310-316.

[46]

V. Polshettiwar, “Dendritic Fibrous Nanosilica: Discovery, Synthesis, Formation Mechanism, Catalysis, and CO2 Capture-Conversion,” Accounts of Chemical Research 55, no. 10 (2022): 1395-1410.

[47]

Y. Gao, R. Sun, L. Yu, and W. Wang, “Facile Preparation of Hierarchical Mesoporous Silica Microspheres With Tunable Porous Structure and Particle Sizes,” Ceramics International 49, no. 2 (2023): 3030-3040.

[48]

Z. Liang, Y. Yang, Y. Zhang, et al., “Synergistic Photocatalysis of Mesoporous Confinement Effect and Si-O-Ti Interface for Organic Pollutants Degradation,” Surfaces and Interfaces 51 (2024): 104715.

[49]

H. Yi, E. Almatrafi, D. Ma, et al., “Spatial Confinement: A Green Pathway to Promote the Oxidation Processes for Organic Pollutants Removal From Water,” Water Research 233 (2023): 119719.

[50]

T. Tanaka, H. Nojima, H. Yoshida, et al., “Preparation of Highly Dispersed Niobium Oxide on Silica by Equilibrium Adsorption Method,” Catalysis Today 16, no. 3-4 (1993): 297-307.

[51]

H. Yoshida, C. Murata, and T. Hattori, “Screening Study of Silica-Supported Catalysts for Photoepoxidation of Propene by Molecular Oxygen,” Journal of Catalysis 194, no. 2 (2000): 364-372.

[52]

H. Yoshida, T. Tanaka, M. Yamamoto, T. Yoshida, T. Funabiki, and S. Yoshida, “Epoxidation of Propene by Gaseous Oxygen Over Silica and Mg-Loaded Silica Under Photoirradiation,” Journal of Catalysis 171, no. 2 (1997): 351-357.

[53]

C. G. Göltner and M. C. Weißenberger, “Mesoporous Organic Polymers Obtained by ‘Two Step Nanocasting’,” Acta Polymerica 49, no. 12 (1998): 704-709.

[54]

G. Qi, Y. Wang, L. Estevez, et al., “Facile and Scalable Synthesis of Monodispersed Spherical Capsules With a Mesoporous Shell,” Chemistry of Materials 22, no. 9 (2010): 2693-2695.

[55]

H. Blas, M. Save, P. Pasetto, C. Boissière, C. Sanchez, and B. Charleux, “Elaboration of Monodisperse Spherical Hollow Particles With Ordered Mesoporous Silica Shells via Dual Latex/Surfactant Templating: Radial Orientation of Mesopore Channels,” Langmuir 24, no. 22 (2008): 13132-13137.

[56]

J. Liu, S. Z. Qiao, H. Liu, et al., “Extension of the Stöber Method to the Preparation of Monodisperse Resorcinol-Formaldehyde Resin Polymer and Carbon Spheres,” Angewandte Chemie International Edition 50, no. 26 (2011): 5947-5951.

[57]

A. Chen, Y. Yu, H. Lv, Y. Zhang, T. Xing, and Y. Yu, “Synthesis of Hollow Mesoporous Silica Spheres and Carambola-Like Silica Materials With a Novel Resin Sphere as Template,” Materials Letters 135 (2014): 43-46.

[58]

T. Haynes, O. Bougnouch, V. Dubois, and S. Hermans, “Preparation of Mesoporous Silica Nanocapsules With a High Specific Surface Area by Hard and Soft Dual Templating Approach: Application to Biomass Valorization Catalysis,” Microporous and Mesoporous Materials 306 (2020): 110400.

[59]

C. Rodriguez-Abreu, N. Vilanova, C. Solans, et al., “A Combination of Hard and Soft Templating for the Fabrication of Silica Hollow Microcoils With Nanostructured Walls,” Nanoscale Research Letters 6 (2011): 330.

[60]

Y. Li and Z. Ma, “Synthesis of Spindle-Like Hollow Mesoporous Silicas With Tunable Wall Thickness,” in International Conference on Biochemical Materials and Nanotechnology Application (BMNA2012) (2012).

[61]

R. Liu and C. Wang, “Synthesis of Hollow Mesoporous Silica Spheres With Radially Aligned Mesochannels and Tunable Textural Properties,” Ceramics International 41, no. 1, Part B (2015): 1101-1106.

[62]

B. Platschek, A. Keilbach, and T. Bein, “Mesoporous Structures Confined in Anodic Alumina Membranes,” Advanced Materials 23, no. 21 (2011): 2395-2412.

[63]

G. L. Drisko, A. Zelcer, R. A. Caruso, and G. J. A. A. Soler-Illia, “One-Pot Synthesis of Silica Monoliths With Hierarchically Porous Structure,” Microporous and Mesoporous Materials 148, no. 1 (2012): 137-144.

[64]

P. P. Ghimire and M. Jaroniec, “Renaissance of Stöber Method for Synthesis of Colloidal Particles: New Developments and Opportunities,” Journal of Colloid and Interface Science 584 (2021): 838-865.

[65]

J. S. Beck, J. C. Vartuli, W. J. Roth, et al., “A New Family of Mesoporous Molecular Sieves Prepared With Liquid Crystal Templates,” Journal of the American Chemical Society 114, no. 27 (1992): 10834-10843.

[66]

A. Korpi and M. A. Kostiainen, “Sol-Gel Synthesis of Mesoporous Silica Using a Protein Crystal Template,” ChemNanoMat 8, no. 4 (2022): e202100458.

[67]

M. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap, and M. R. Sazegar, “Highly Active Ni-Promoted Mesostructured Silica Nanoparticles for CO2 Methanation,” Applied Catalysis, B: Environmental 147 (2014): 359-368.

[68]

Y. Horiuchi and H. Yamashita, “Design of Mesoporous Silica Thin Films Containing Single-Site Photocatalysts and Their Applications to Superhydrophilic Materials,” Applied Catalysis, A: General 400, no. 1-2 (2011): 1-8.

[69]

Y. Chen, H. Chen, L. Guo, et al., “Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy,” ACS Nano 4, no. 1 (2010): 529-539.

[70]

M. Cheng, Y. Liu, H. Jiang, C. Li, S. Sun, and S. Hu, “Hollow Multi-Shelled Structure Engineering of Organosilica for Efficient and Selective Uranium Extraction From Seawater,” Desalination 583 (2024): 117729.

[71]

P. M. Arnal, F. Schüth, and F. Kleitz, “A Versatile Method for the Production of Monodisperse Spherical Particles and Hollow Particles: Templating From Binary Core-Shell Structures,” Chemical Communications no. 11 (2006): 1203-1205.

[72]

N. Hao, L. Li, and F. Tang, “Facile and Tunable Synthesis of Hierarchical Mesoporous Silica Materials Ranging From Flower Structure With Wrinkled Edges to Hollow Structure With Coarse Surface,” Journal of Nanoparticle Research 18, no. 11 (2016): 321.

[73]

Y. Chang, K. Yang, P. Wei, et al., “Cationic Vesicles Based on Amphiphilic Pillar[5]arene Capped With Ferrocenium: A Redox-Responsive System for Drug/siRNA Co-Delivery,” Angewandte Chemie International Edition 53, no. 48 (2014): 13126-13130.

[74]

D. Lombardo, M. A. Kiselev, S. Magazù, and P. Calandra, “Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches,” Advances in Condensed Matter Physics 2015 (2015): 151683.

[75]

K. Cendrowski, “Titania/Mesoporous Silica Nanotubes With Efficient Photocatalytic Properties,” Polish Journal of Chemical Technology 20, no. 1 (2018): 103-108.

[76]

Z. Li, B. Qin, H. Liu, et al., “Mesoporous Silica Thin Film as Effective Coating for Enhancing Osteogenesis Through Selective Protein Adsorption and Blood Clotting,” Biomedical Materials 19, no. 5 (2024): 055040.

[77]

P. Garai, S. Ghosh, and N. R. Jana, “Nanoporous Silica Nanoparticles With Janus Functionalization for Enhanced Cell Uptake and Drug Delivery,” ACS Applied Nano Materials 7, no. 11 (2024): 12207-12213.

[78]

Y. Zhang, Z. Zhi, T. Jiang, J. Zhang, Z. Wang, and S. Wang, “Spherical Mesoporous Silica Nanoparticles for Loading and Release of the Poorly Water-Soluble Drug Telmisartan,” Journal of Controlled Release 145, no. 3 (2010): 257-263.

[79]

S. Lei, J. Zhang, J. Wang, and J. Huang, “Self-Catalytic Sol-Gel Synergetic Replication of Uniform Silica Nanotubes Using an Amino Acid Amphiphile Dynamically Growing Fibers as Template,” Langmuir 26, no. 6 (2010): 4288-4295.

[80]

M. Grün, K. K. Unger, A. Matsumoto, and K. Tsutsumi, “Novel Pathways for the Preparation of Mesoporous MCM-41 Materials: Control of Porosity and Morphology,” Microporous and Mesoporous Materials 27, no. 2 (1999): 207-216.

[81]

J. Q. Wei, X. J. Chen, P. F. Wang, et al., “High Surface Area TiO2/SBA-15 Nanocomposites: Synthesis, Microstructure and Adsorption-Enhanced Photocatalysis,” Chemical Physics 510 (2018): 47-53.

[82]

F. Huang, H. Hao, W. Sheng, X. Dong, and X. Lang, “Embedding an Organic Dye Into Ti-MCM-48 for Direct Photocatalytic Selective Aerobic Oxidation of Sulfides Driven by Green Light,” Chemical Engineering Journal 432 (2022): 134285.

[83]

F. Zhang, Y. Zheng, Y. Cao, et al., “Ordered Mesoporous Ag-TiO2-KIT-6 Heterostructure: Synthesis, Characterization and Photocatalysis,” Journal of Materials Chemistry 19, no. 18 (2009): 2771-2777.

[84]

M. Xing, D. Qi, J. Zhang, et al., “Super-Hydrophobic Fluorination Mesoporous MCF/TiO2 Composite as a High-Performance Photocatalyst,” Journal of Catalysis 294 (2012): 37-46.

[85]

J. Ma, L. Qiang, X. Tang, and H. Li, “A Simple and Rapid Method to Directly Synthesize TiO2/SBA-16 With Different TiO2 Loading and Its Photocatalytic Degradation Performance on Rhodamine B,” Catalysis Letters 138, no. 1-2 (2010): 88-95.

[86]

R. Kitamura, H. Watanabe, S. Somekawa, et al., “Diatom-Mimetic Channeled Mesoporous Silica Membranes: Self-Organized Formation of a Hierarchical Porous Framework,” Materials Chemistry Frontiers 5, no. 2 (2021): 862-868.

[87]

K. Panwar, M. Jassal, and A. K. Agrawal, “TiO2-SiO2 Janus Particles for Photocatalytic Self-Cleaning of Cotton Fabric,” Cellulose 25, no. 4 (2018): 2711-2720.

[88]

B. Yang, K. Edler, C. Guo, and H. Liu, “Assembly of Nonionic-Anionic Co-Surfactants to Template Mesoporous Silica Vesicles With Hierarchical Structures,” Microporous and Mesoporous Materials 131, no. 1 (2010): 21-27.

[89]

S. Deng, C.-X. Cui, L. Liu, et al., “A Facile and Controllable One-Pot Synthesis Approach to Amino-Functionalized Hollow Silica Nanoparticles With Accessible Ordered Mesoporous Shells,” Chinese Chemical Letters 32, no. 3 (2021): 1177-1180.

[90]

D. Niu, Z. Ma, Y. Li, and J. Shi, “Synthesis of Core-Shell Structured Dual-Mesoporous Silica Spheres With Tunable Pore Size and Controllable Shell Thickness,” Journal of the American Chemical Society 132, no. 43 (2010): 15144-15147.

[91]

X. Su, J. Tao, S. Chen, P. Xu, D. Wang, and Z. Teng, “Uniform Hierarchical Silica Film With Perpendicular Macroporous Channels and Accessible Ordered Mesopores for Biomolecule Separation,” Chinese Chemical Letters 30, no. 5 (2019): 1089-1092.

[92]

R. I. Nooney, M. Kalyanaraman, G. Kennedy, and E. J. Maginn, “Heavy Metal Remediation Using Functionalized Mesoporous Silicas With Controlled Macrostructure,” Langmuir 17, no. 2 (2001): 528-533.

[93]

S. Molaei, T. Tamoradi, M. Ghadermazi, and A. Ghorbani-Choghamarani, “Ordered Mesoporous SBA-15 Functionalized With Yttrium(III) and Cerium(III) Complexes: Towards Active Heterogeneous Catalysts for Oxidation of Sulfides and Preparation of 5-Substituted 1H-Tetrazoles,” Applied Organometallic Chemistry 33, no. 1 (2019): e4649.

[94]

J. Lee, K. Kim, I. S. Chang, et al., “Enhanced Mass Transfer Rate of Methane in Aqueous Phase via Methyl-Functionalized SBA-15,” Journal of Molecular Liquids 215 (2016): 154-160.

[95]

P. Verma, Y. Kuwahara, K. Mori, R. Raja, and H. Yamashita, “Functionalized Mesoporous SBA-15 Silica: Recent Trends and Catalytic Applications,” Nanoscale 12, no. 21 (2020): 11333-11363.

[96]

S. Angloher, J. Kecht, and T. Bein, “Metal-Organic Modification of Periodic Mesoporous Silica: Multiply Bonded Systems,” Chemistry of Materials 19, no. 23 (2007): 5797-5802.

[97]

J. Górka and M. Jaroniec, “Tailoring Adsorption and Framework Properties of Mesoporous Polymeric Composites and Carbons by Addition of Organosilanes During Soft-Templating Synthesis,” Journal of Physical Chemistry C 114, no. 14 (2010): 6298-6303.

[98]

J. Peng, Y. Yao, X. Zhang, C. Li, and Q. Yang, “Superhydrophobic Mesoporous Silica Nanospheres Achieved via a High Level of Organo-Functionalization,” Chemical Communications 50, no. 74 (2014): 10830-10833.

[99]

M. S. Morey, G. D. Stucky, S. Schwarz, and M. Fröba, “Isomorphic Substitution and Postsynthesis Incorporation of Zirconium Into MCM-48 Mesoporous Silica,” Journal of Physical Chemistry B 103, no. 12 (1999): 2037-2041.

[100]

G. Chaudhary, B. Joshi, and A. P. Singh, “Recyclable Pd(II) Immobilized MCM-41 Based Heterogeneous Catalyst for Suzuki-Miyaura and Heck Coupling Reactions,” Inorganic Chemistry Communications 164 (2024): 112405.

[101]

G. Mohammadi Ziarani, N. Rezaei-Miandashti, S. Asgari, A. Badiei, and Y. Vasseghian, “SBA-Pr-CQC-CA Synthesis as a Highly Selective Hg2+ Ions Chemosensor,” Microchemical Journal 205 (2024): 111227.

[102]

Ľ. Zauška, T. Zelenka, M. Lisnichuk, et al., “PEI-Schiff Base-Modified Mesoporous Silica Materials SBA-12, 15 and 16 for Toxic Metal Ions Capture (Co(II), Ni(II) and Cu(II)): Effect of Morphology, Post-Synthetic Modification and Kinetic Study,” Materials Today Communications 35 (2023): 106049.

[103]

J. Dobrzyńska, “Amine- and Thiol-Functionalized SBA-15: Potential Materials for As(V), Cr(VI) and Se(VI) Removal From Water. Comparative Study,” Journal of Water Process Engineering 40 (2021): 101942.

[104]

M. Lalehchini, A. Mohajeri, M. M. A. Nikje, and M. Rezapour, “Investigation of Synergistic Effects Using Alkanolamines on Post-Synthetic Modification of Metal-Organic Framework and CO2 Adsorption Capacity,” Microporous and Mesoporous Materials 378 (2024): 113242.

[105]

H. Vojoudi, A. Badiei, S. Bahar, G. Mohammadi Ziarani, F. Faridbod, and M. R. Ganjali, “Post-Modification of Nanoporous Silica Type SBA-15 by bis(3-Triethoxysilylpropyl)tetrasulfide as an Efficient Adsorbent for Arsenic Removal,” Powder Technology 319 (2017): 271-278.

[106]

Y. Kanda, T. Aizawa, T. Kobayashi, Y. Uemichi, S. Namba, and M. Sugioka, “Preparation of Highly Active AlSBA-15-Supported Platinum Catalyst for Thiophene Hydrodesulfurization,” Applied Catalysis, B: Environmental 77, no. 1 (2007): 117-124.

[107]

Y. Kanda, T. Kobayashi, Y. Uemichi, S. Namba, and M. Sugioka, “Effect of Aluminum Modification on Catalytic Performance of Pt Supported on MCM-41 for Thiophene Hydrodesulfurization,” Applied Catalysis, A: General 308 (2006): 111-118.

[108]

M. C. Chao, H. P. Lin, C. Y. Mou, B. W. Cheng, and C. F. Cheng, “Synthesis of Nano-Sized Mesoporous Silicas With Metal Incorporation,” Catalysis Today 97, no. 1 (2004): 81-87.

[109]

Y.-H. Liu, H.-P. Lin, and C.-Y. Mou, “One-Step Grafting of Al2O3 Onto Acid-Made Mesoporous Silica,” Journal of the Chinese Chemical Society 52, no. 4 (2005): 717-720.

[110]

D. P. Das and K. M. Parida, “Enhanced Catalytic Activity of Ti, V, Mn-Grafted Silica Spheres Towards Epoxidation Reaction,” Catalysis Letters 128, no. 1-2 (2009): 111-118.

[111]

N. Fattori, C. M. Maroneze, L. P. da Costa, et al., “Ion-Exchange Properties of Imidazolium-Grafted SBA-15 Toward AuCl4 Anions and Their Conversion Into Supported Gold Nanoparticles,” Langmuir 28, no. 27 (2012): 10281-10288.

[112]

I. A. Khan, H. Hussain, T. Yasin, and M. Inaam-ul-Hassan, “Surface Modification of Mesoporous Silica by Radiation Induced Graft Polymerization of Styrene and Subsequent Sulfonation for Ion-Exchange Applications,” Journal of Applied Polymer Science 137, no. 26 (2020): 48835.

[113]

A. N. Gleizes, A. Fernandes, and J. Dexpert-Ghys, “Grafting 4f and 3d Metal Complexes Into Mesoporous MCM-41 Silica by Wet Impregnation and by Chemical Vapour Infiltration,” Journal of Alloys and Compounds 374, no. 1-2 (2004): 303-306.

[114]

V. Mahdavi and M. Mardani, “Preparation of Manganese Oxide Immobilized on SBA-15 by Atomic Layer Deposition as an Efficient and Reusable Catalyst for Selective Oxidation of Benzyl Alcohol in the Liquid Phase,” Materials Chemistry and Physics 155 (2015): 136-146.

[115]

C. He, Q. Li, P. Li, et al., “Templated Silica With Increased Surface Area and Expanded Microporosity: Synthesis, Characterization, and Catalytic Application,” Chemical Engineering Journal 162, no. 3 (2010): 901-909.

[116]

Q. Zhang, T. Zhang, J. Ge, and Y. Yin, “Permeable Silica Shell Through Surface-Protected Etching,” Nano Letters 8, no. 9 (2008): 2867-2871.

[117]

T. Zhang, J. Ge, Y. Hu, Q. Zhang, S. Aloni, and Y. Yin, “Formation of Hollow Silica Colloids Through a Spontaneous Dissolution-Regrowth Process,” Angewandte Chemie International Edition 47, no. 31 (2008): 5806-5811.

[118]

L. Jia, J. Shen, Z. Li, et al., “Successfully Tailoring the Pore Size of Mesoporous Silica Nanoparticles: Exploitation of Delivery Systems for Poorly Water-Soluble Drugs,” International Journal of Pharmaceutics 439, no. 1 (2012): 81-91.

[119]

Y. Hu, Q. Zhang, J. Goebl, T. Zhang, and Y. Yin, “Control Over the Permeation of Silica Nanoshells by Surface-Protected Etching With Water,” Physical Chemistry Chemical Physics 12, no. 38 (2010): 11836-11842.

[120]

Z. Teng, X. Su, Y. Zheng, et al., “A Facile Multi-Interface Transformation Approach to Monodisperse Multiple-Shelled Periodic Mesoporous Organosilica Hollow Spheres,” Journal of the American Chemical Society 137, no. 24 (2015): 7935-7944.

[121]

Y.-S. Lin, S.-H. Wu, C.-T. Tseng, Y. Hung, C. Chang, and C. Y. Mou, “Synthesis of Hollow Silica Nanospheres With a Microemulsion as the Template,” Chemical Communications no. 24 (2009): 3542-3544.

[122]

K. Zhang, L.-L. Xu, J.-G. Jiang, et al., “Facile Large-Scale Synthesis of Monodisperse Mesoporous Silica Nanospheres With Tunable Pore Structure,” Journal of the American Chemical Society 135, no. 7 (2013): 2427-2430.

[123]

Y. Dai, D. Yang, D. Yu, et al., “Engineering of Monodisperse Core-Shell Up-Conversion Dendritic Mesoporous Silica Nanocomposites With a Tunable Pore Size,” Nanoscale 12, no. 8 (2020): 5075-5083.

[124]

P. C. Liu, Y. J. Yu, B. Peng, et al., “A Dual-Templating Strategy for the Scale-Up Synthesis of Dendritic Mesoporous Silica Nanospheres,” Green Chemistry 19, no. 23 (2017): 5575-5581.

[125]

V. Polshettiwar, D. Cha, X. Zhang, and J. M. Basset, “High-Surface-Area Silica Nanospheres (KCC-1) With a Fibrous Morphology,” Angewandte Chemie International Edition 49, no. 50 (2010): 9652-9656.

[126]

A. J. Paula, L. A. Montoro, A. G. S. Filho, and O. L. Alves, “Towards Long-Term Colloidal Stability of Silica-Based Nanocarriers for Hydrophobic Molecules: Beyond the Stöber Method,” Chemical Communications 48, no. 4 (2012): 591-593.

[127]

A. B. D. Nandiyanto, S.-G. Kim, F. Iskandar, and K. Okuyama, “Synthesis of Spherical Mesoporous Silica Nanoparticles With Nanometer-Size Controllable Pores and Outer Diameters,” Microporous and Mesoporous Materials 120, no. 3 (2009): 447-453.

[128]

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, “Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,” Journal of the American Chemical Society 120, no. 24 (1998): 6024-6036.

[129]

A. Monnier, F. Schüth, Q. Huo, et al., “Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures,” Science 261, no. 5126 (1993): 1299-1303.

[130]

A. Firouzi, D. Kumar, L. M. Bull, et al., “Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies,” Science 267, no. 5201 (1995): 1138-1143.

[131]

S. Che, S. Lim, M. Kaneda, H. Yoshitake, O. Terasaki, and T. Tatsumi, “The Effect of the Counteranion on the Formation of Mesoporous Materials Under the Acidic Synthesis Process,” Journal of the American Chemical Society 124, no. 47 (2002): 13962-13963.

[132]

D. Baute and D. Goldfarb, “Interaction of Nitrates With Pluronic Micelles and Their Role in the Phase Formation of Mesoporous Materials,” Journal of Physical Chemistry C 111, no. 29 (2007): 10931-10940.

[133]

Z. Jin and H. Liang, “Effects of Morphology and Structural Characteristics of Ordered SBA-15 Mesoporous Silica on Release of Ibuprofen,” Journal of Dispersion Science and Technology 31, no. 5 (2010): 654-659.

[134]

K. Zhuang, M. Yan, C. Qiu, G. He, and Q. He, “The Effects of Cyclic Alcohols on Particle Morphology and Pore Diameter for the SBA-15,” Microporous and Mesoporous Materials 311 (2021): 110706.

[135]

Q. Xian, X. He, L. Chen, E. Wang, H. Dan, and Y. Ding, “Controllable Synthesis of Mesoporous SBA-15 Using H2SO4,” Philosophical Magazine Letters 101, no. 5 (2021): 203-210.

[136]

D. Zhao, J. Sun, Q. Li, and G. D. Stucky, “Morphological Control of Highly Ordered Mesoporous Silica SBA-15,” Chemistry of Materials 12, no. 2 (2000): 275-279.

[137]

H. Long, W. Wang, W. Yang, Y. Wang, and H. Ru, “Facile and Controllable Preparation of Different SBA-15 Platelets and Their Regulated Drug Release Behaviours,” Microporous and Mesoporous Materials 263 (2018): 34-41.

[138]

Y. Zhu, H. Li, J. Xu, H. Yuan, J. Wang, and X. Li, “Monodispersed Mesoporous SBA-15 With Novel Morphologies: Controllable Synthesis and Morphology Dependence of Humidity Sensing,” CrystEngComm 13, no. 2 (2011): 402-405.

[139]

M. Manzano, V. Aina, C. O. Areán, et al., “Studies on MCM-41 Mesoporous Silica for Drug Delivery: Effect of Particle Morphology and Amine Functionalization,” Chemical Engineering Journal 137, no. 1 (2008): 30-37.

[140]

Q. Qu, G. Zhou, Y. Ding, S. Feng, and Z. Gu, “Adjustment of the Morphology of MCM-41 Silica in Basic Solution,” Journal of Non-Crystalline Solids 405 (2014): 104-115.

[141]

J. Liu, S. Liu, Y. Li, et al., “Lanthanide-Doped Mesoporous MCM-41 Nanoparticles as a Novel Optical-Magnetic Multifunctional Nanobioprobe,” RSC Advances 9, no. 70 (2019): 40835-40844.

[142]

L. Kong, S. Liu, X. Yan, Q. Li, and H. He, “Synthesis of MCM-48 Single Crystals With Cube Morphology,” Chemistry Letters 34, no. 4 (2005): 568-569.

[143]

A. Chang, N.-C. Lai, and C.-M. Yang, “MCM-48 Nanorods: A Self-Assembled Isotropic Cubic Mesostructure With Anisotropic Morphology,” RSC Advances 2, no. 32 (2012): 12088-12090.

[144]

W. Zhao, M. Qin, L. Wang, et al., “Synthesis of Submicron Spherical Fe-MCM-48 With Actual Gyroid Like Structure,” Journal of Colloid and Interface Science 384, no. 1 (2012): 81-86.

[145]

H. Qin, M. Liang, X. Zhang, et al., “Photoluminescence and Phosphorescence From MCM-48 Nanoparticle-Embedded Composite Nanofibers Prepared by Electrospinning,” RSC Advances 2, no. 30 (2012): 11207-11210.

[146]

R. Sun, P. Qiao, Z. Wang, and W. Wang, “Monodispersed Large-Mesopore Mesoporous Silica Nanoparticles Enabled by Sulfuric Acid Assisted Hydrothermal Process,” Microporous and Mesoporous Materials 317 (2021): 111023.

[147]

X. Hong, X. Zhong, G. Du, et al., “The Pore Size of Mesoporous Silica Nanoparticles Regulates Their Antigen Delivery Efficiency,” Science Advances 6, no. 25 (2020): eaaz4462.

[148]

R. Zana, “Aqueous Surfactant-Alcohol Systems: A Review,” Advances in Colloid and Interface Science 57 (1995): 1-64.

[149]

R. Sun, Y. Sun, and W. Wang, “Facile and Controllable Preparation of Mesoporous Silica Nanoparticles With Ultra-Large Mesopores Enabled by an Ammonium Chloride-Assisted Hydrothermal Process,” Microporous and Mesoporous Materials 360 (2023): 112730.

[150]

R. Sun, A. Zhang, H. D. Sun, J. Jiang, and W. Wang, “Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles With Ultra-Large Mesopores Through a NaBH4-Assisted Hydrothermal Process,” Journal of Non-Crystalline Solids 627 (2024): 122820.

[151]

R. Sun, J. Zhou, and W. Wang, “A Boric Acid-Assisted Hydrothermal Process for Preparation of Mesoporous Silica Nanoparticles With Ultra-Large Mesopores and Tunable Particle Sizes,” Ceramics International 49, no. 12 (2023): 20518-20527.

[152]

F. Fresno, P. Reñones, E. Alfonso, et al., “Influence of Surface Density on the CO2 Photoreduction Activity of a DC Magnetron Sputtered TiO2 Catalyst,” Applied Catalysis, B: Environmental 224 (2018): 912-918.

[153]

B. A. Abdulkadir, L. P. Teh, S. Z. Abidin, et al, “Advancements in Silica-Based Nanostructured Photocatalysts for Efficient Hydrogen Generation From Water Splitting,” Chemical Engineering Research & Design 199 (2023): 541-568.

[154]

N. L. Torres-Garcia, F. Fresno, F. E. Oropeza, R. Huirache-Acuña, and V. A. de la Peña-O'Shea, “Effect of the TiO2 Nanocrystal Dispersion Over SBA-15 in the Photocatalytic H2 Production Using Ethanol as Electron Donor,” Advanced Sustainable Systems 5, no. 11 (2021): 2100133.

[155]

R. Peng, J. Baltrusaitis, C.-M. Wu, and R. T. Koodali, “Pd-Ti-MCM-48 Cubic Mesoporous Materials for Solar Simulated Hydrogen Evolution,” International Journal of Hydrogen Energy 40, no. 2 (2015): 905-918.

[156]

S. Li, C. Zhou, J. Hu, A. Duan, C. Xu, and X. Wang, “PdIr Nanoparticles on NH2-Functionalized Dendritic Mesoporous Silica Nanospheres for Efficient Dehydrogenation of Formic Acid,” Journal of Catalysis 426 (2023): 153-161.

[157]

W. Wang and J. Fang, “Mesoporous SiO2-Derived g-C3N4@CdS Core-Shell Heteronanostructure for Efficient and Stable Photocatalytic H2 Production,” Ceramics International 46, no. 2 (2020): 2384-2391.

[158]

H. Chai, J. Hu, R. Zhang, et al., “Efficient Hydrogen Production From Formic Acid Dehydrogenation Over Ultrasmall PdIr Nanoparticles on Amine-Functionalized Yolk-Shell Mesoporous Silica,” Journal of Colloid and Interface Science 678 (2025): 261-271.

[159]

R. van Grieken, J. Aguado, M. J. López-Muñoz, and J. Marugán, “Synthesis of Size-Controlled Silica-Supported TiO2 Photocatalysts,” Journal of Photochemistry and Photobiology, A: Chemistry 148, no. 1 (2002): 315-322.

[160]

S. G. Sanches, J. H. Flores, and M. I. P. da Silva, “Ti Dispersion on SBA-15 Porous Host to Enhance Photocatalytic Hydrogen Production,” Journal of Molecular Structure 1170 (2018): 9-17.

[161]

P. Verma, K. Yuan, Y. Kuwahara, K. Mori, and H. Yamashita, “Enhancement of Plasmonic Activity by Pt/Ag Bimetallic Nanocatalyst Supported on Mesoporous Silica in the Hydrogen Production From Hydrogen Storage Material,” Applied Catalysis, B: Environmental 223 (2018): 10-15.

[162]

Y. Zhuang, H.-Y. Song, G. Li, and Y. J. Xu, “Ti-HMS as a Single-Site Photocatalyst for the Gas-Phase Degradation of Benzene,” Materials Letters 64, no. 22 (2010): 2491-2493.

[163]

H. Chen, Y.-P. Peng, K.-F. Chen, C. H. Lai, and Y. C. Lin, “Rapid Synthesis of Ti-MCM-41 by Microwave-Assisted Hydrothermal Method Towards Photocatalytic Degradation of Oxytetracycline,” Journal of Environmental Sciences 44 (2016): 76-87.

[164]

D. Chen, Y. Yang, X. Zhang, X. Wang, Y. Xu, and G. Qian, “Mesoporous Composite NiCr2O4/Al-MCM-41: A Novel Photocatalyst for Enhanced Hydrogen Production,” International Journal of Hydrogen Energy 44, no. 33 (2019): 18123-18133.

[165]

R. Peng, D. Zhao, N. M. Dimitrijevic, T. Rajh, and R. T. Koodali, “Room Temperature Synthesis of Ti-MCM-48 and Ti-MCM-41 Mesoporous Materials and Their Performance on Photocatalytic Splitting of Water,” Journal of Physical Chemistry C 116, no. 1 (2012): 1605-1613.

[166]

X. Liu, S. Min, F. Wang, and Z. Zhang, “Confining Mo-Activated CoSx Active Sites Within MCM-41 for Highly Efficient Dye-Sensitized Photocatalytic H2 Evolution,” Journal of Colloid and Interface Science 563 (2020): 112-121.

[167]

W. Dong, Y. Zhu, H. Huang, et al., “A Performance Study of Enhanced Visible-Light-Driven Photocatalysis and Magnetical Protein Separation of Multifunctional Yolk-Shell Nanostructures,” Journal of Materials Chemistry A 1, no. 34 (2013): 10030-10036.

[168]

M. W. Kadi, R. M. Mohamed, A. A. Ismail, and D. W. Bahnemann, “Soft and Hard Templates Assisted Synthesis Mesoporous CuO/g-C3N4 Heterostructures for Highly Enhanced and Accelerated Hg(II) Photoreduction Under Visible Light,” Journal of Colloid and Interface Science 580 (2020): 223-233.

[169]

J. Zhang, Z. Zhu, Y. Tang, K. Müllen, and X. Feng, “Titania Nanosheet-Mediated Construction of a Two-Dimensional Titania/Cadmium Sulfide Heterostructure for High Hydrogen Evolution Activity,” Advanced Materials 26, no. 5 (2014): 734-738.

[170]

R. Nakamura, A. Okamoto, H. Osawa, H. Irie, and K. Hashimoto, “Design of All-Inorganic Molecular-Based Photocatalysts Sensitive to Visible Light: Ti(IV)-O-Ce(III) Bimetallic Assemblies on Mesoporous Silica,” Journal of the American Chemical Society 129, no. 31 (2007): 9596-9597.

[171]

W. Lin and H. Frei, “Photochemical CO2 Splitting by Metal-to-Metal Charge-Transfer Excitation in Mesoporous ZrCu(I)-MCM-41 Silicate Sieve,” Journal of the American Chemical Society 127, no. 6 (2005): 1610-1611.

[172]

S. Liu, “Photocatalytic Generation of Hydrogen on Zr-MCM-41,” International Journal of Hydrogen Energy 27, no. 9 (2002): 859-862.

[173]

Y. Hu, G. Martra, J. Zhang, S. Higashimoto, S. Coluccia, and M. Anpo, “Characterization of the Local Structures of Ti-MCM-41 and Their Photocatalytic Reactivity for the Decomposition of NO Into N2 and O2,” Journal of Physical Chemistry B 110, no. 4 (2006): 1680-1685.

[174]

M. Wang, N. Wei, W. Fu, et al., “An Efficient and Recyclable Urchin-Like Yolk-Shell Fe3O4@SiO2@Co3O4 Catalyst for Photocatalytic Water Oxidation,” Catalysis Letters 145, no. 4 (2015): 1067-1071.

[175]

S. Shen, J. Chen, R. T. Koodali, et al., “Activation of MCM-41 Mesoporous Silica by Transition-Metal Incorporation for Photocatalytic Hydrogen Production,” Applied Catalysis, B: Environmental 150-151 (2014): 138-146.

[176]

K. Yamamoto, Y. Sunagawa, H. Takahashi, and A. Muramatsu, “Metallic Ni Nanoparticles Confined in Hexagonally Ordered Mesoporous Silica Material,” Chemical Communications no. 3 (2005): 348-350.

[177]

B. Dai, B. Wen, M. Zhu, L. Kang, and F. Yu, “Nickel Catalysts Supported on Amino-Functionalized MCM-41 for Syngas Methanation,” RSC Advances 6, no. 71 (2016): 66957-66962.

[178]

C.-S. Chen, C. S. Budi, H.-C. Wu, D. Saikia, and H. M. Kao, “Size-Tunable Ni Nanoparticles Supported on Surface-Modified, Cage-Type Mesoporous Silica as Highly Active Catalysts for CO2 Hydrogenation,” ACS Catalysis 7, no. 12 (2017): 8367-8381.

[179]

A. Ungureanu, B. Dragoi, A. Chirieac, S. Royer, D. Duprez, and E. Dumitriu, “Synthesis of Highly Thermostable Copper-Nickel Nanoparticles Confined in the Channels of Ordered Mesoporous SBA-15 Silica,” Journal of Materials Chemistry 21, no. 33 (2011): 12529-12541.

[180]

M. Zhao, N. H. Florin, and A. T. Harris, “The Influence of Supported Ni Catalysts on the Product Gas Distribution and H2 Yield During Cellulose Pyrolysis,” Applied Catalysis, B: Environmental 92, no. 1 (2009): 185-193.

[181]

W. Zhou, Y. Chen, C. Wang, M. Wang, and A. Chen, “Development of Ce/Cu Co-Doped Dendritic Mesoporous Silica Nanoparticles (DMSNs) as Novel Abrasive Systems Toward High-Performance Chemical Mechanical Polishing,” Ceramics International 50, no. 18, Part B (2024): 33235-33250.

[182]

J. Sun, W. Zhang, H. Li, J. Liu, Z. Xu, and S. Zheng, “Size-Tunable Ni Particles Confined in the Ordered Mesoporous Silica for Catalytic H2 Production From Ammonia Borane Hydrolysis,” International Journal of Hydrogen Energy 58 (2024): 964-973.

[183]

W.-H. Tian, L.-B. Sun, X.-L. Song, X. Q. Liu, Y. Yin, and G. S. He, “Adsorptive Desulfurization by Copper Species Within Confined Space,” Langmuir 26, no. 22 (2010): 17398-17404.

[184]

M. S. Lima, J. F. Cruz-Filho, L. F. G. Noleto, L. J. Silva, T. M. S. Costa, and G. E. Luz, “Synthesis, Characterization and Catalytic Activity of Fe3O4@WO3/SBA-15 on Photodegradation of the Acid Dichlorophenoxyacetic (2,4-D) Under UV Irradiation,” Journal of Environmental Chemical Engineering 8, no. 5 (2020): 104145.

[185]

M. Zhu, Y. Cheng, Q. Luo, M. El-khateeb, and Q. Zhang, “A Review of Synthetic Approaches to Hollow Nanostructures,” Materials Chemistry Frontiers 5, no. 6 (2021): 2552-2587.

[186]

F. Böttger-Hiller, P. Kempe, G. Cox, et al., “Twin Polymerization at Spherical Hard Templates: An Approach to Size-Adjustable Carbon Hollow Spheres With Micro- or Mesoporous Shells,” Angewandte Chemie International Edition 52, no. 23 (2013): 6088-6091.

[187]

Q.-Q. Jin, C.-Y. Zhang, W.-N. Wang, B. J. Chen, J. Ruan, and H. S. Qian, “Recent Development on Controlled Synthesis of Metal Sulfides Hollow Nanostructures via Hard Template Engaged Strategy: A Mini-Review,” Chemical Record 20, no. 8 (2020): 882-892.

[188]

B. Zhang, J. Li, Q. Song, S. Lv, Y. Shi, and H. Liu, “g-C3N4-Modulated Bifunctional SnO2@g-C3N4@SnS2 Hollow Nanospheres for Efficient Electrochemical Overall Water Splitting,” Applied Surface Science 589 (2022): 153016.

[189]

J. Zhang, M. Zhang, C. Yang, and X. Wang, “Nanospherical Carbon Nitride Frameworks With Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface,” Advanced Materials 26, no. 24 (2014): 4121-4126.

[190]

J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu, and X. Wang, “Bioinspired Hollow Semiconductor Nanospheres as Photosynthetic Nanoparticles,” Nature Communications 3, no. 1 (2012): 1139.

[191]

X. Gao, Q.-Y. Li, Y.-L. Wang, Q. Wei, S. P. Cui, and Z. R. Nie, “A Facile Soft-Hard Template Cooperative Organization Approach for Mesoporous g-C3N4 With High Photocatalytic Performance,” Applied Surface Science 657 (2024): 159574.

[192]

X. Chen, Y.-S. Jun, K. Takanabe, et al., “Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution With Visible Light,” Chemistry of Materials 21, no. 18 (2009): 4093-4095.

[193]

H.-M. Zhao, C.-M. Di, L. Wang, Y. Chun, and Q. H. Xu, “Synthesis of Mesoporous Graphitic C3N4 Using Cross-Linked Bimodal Mesoporous SBA-15 as a Hard Template,” Microporous and Mesoporous Materials 208 (2015): 98-104.

[194]

J. Pankratz, E. Mitchell, and R. Godin, “Soluble Carbon Nitride Nanosheets as an Alternate Precursor for Hard-Templated Morphological Control,” Nanoscale 14, no. 37 (2022): 13580-13592.

[195]

H.-L. Tang, Y. Ren, S.-H. Wei, G. Liu, and X. X. Xu, “Preparation of 3D Ordered Mesoporous Anatase TiO2 and Their Photocatalytic Activity,” Rare Metals 38, no. 5 (2019): 453-458.

[196]

L. Lu, F. Teng, F. SenTapas, D. Qi, L. Wang, and J. Zhang, “Synthesis of Visible-Light Driven CrxOy-TiO2 Binary Photocatalyst Based on Hierarchical Macro-Mesoporous Silica,” Applied Catalysis, B: Environmental 163 (2015): 9-15.

[197]

X. Jiang, R. Chen, Y. X. Chen, and C. Z. Lu, “Research Progress of Photoelectrochemical Conversion of CO2 to C2+ Products,” Chemical Synthesis 4, no. 3 (2024): 46.

[198]

L. Wang, M. N. Ha, Z. Liu, and Z. Zhao, “Mesoporous WO3 Modified by Mo for Enhancing Reduction of CO2 to Solar Fuels Under Visible Light and Thermal Conditions,” Integrated Ferroelectrics 172, no. 1 (2016): 97-108.

[199]

S. Zhang, D. Jiang, T. Tang, et al., “TiO2/SBA-15 Photocatalysts Synthesized Through the Surface Acidolysis of Ti(OnBu)4 on Carboxyl-Modified SBA-15,” Catalysis Today 158, no. 3 (2010): 329-335.

[200]

H. Lei, Z. Chen, J. Zhang, and W. Yu, “Ti3C2Tx MXene-Assisted Solar-Driven CO2 Adsorption and Photothermal Regeneration Over Mesoporous SiO2,” Separation and Purification Technology 347 (2024): 127537.

[201]

B. Han, X. Ou, Z. Zhong, et al., “Photoconversion of Anthropogenic CO2 Into Tunable Syngas Over Industrial Wastes Derived Metal-Organic Frameworks,” Applied Catalysis, B: Environmental 283 (2021): 119594.

[202]

H.-C. Yang, H.-Y. Lin, Y.-S. Chien, J. C. S. Wu, and H. H. Wu, “Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol,” Catalysis Letters 131, no. 3-4 (2009): 381-387.

[203]

T. Ohashi, Y. Miyoshi, K. Katagiri, and K. Inumaru, “Photocatalytic Reduction of Carbon Dioxide by Strontium Titanate Nanocube-Dispersed Mesoporous Silica,” Journal of Asian Ceramic Societies 5, no. 3 (2017): 255-260.

[204]

Y. Li, W.-N. Wang, Z. Zhan, M. H. Woo, C. Y. Wu, and P. Biswas, “Photocatalytic Reduction of CO2 With H2O on Mesoporous Silica Supported Cu/TiO2 Catalysts,” Applied Catalysis, B: Environmental 100, no. 1 (2010): 386-392.

[205]

T. Nogawa, S. Matsushita, T. Isobe, and A. Nakajima, “Preparation of Mesoporous Silica Monoliths Doped With Titanium Clusters,” Chemistry Letters 42, no. 8 (2013): 854-856.

[206]

A.-Y. Lo, Y.-C. Chung, C. Koventhan, and I. J. Teng, “Effect of the Ti Content and Pore Size of Mesoporous Catalysts on CO2 Photoreduction,” Journal of Photochemistry and Photobiology, A: Chemistry 453 (2024): 115631.

[207]

M. S. Hamdy, R. Amrollahi, I. Sinev, B. Mei, and G. Mul, “Strategies to Design Efficient Silica-Supported Photocatalysts for Reduction of CO2,” Journal of the American Chemical Society 136, no. 2 (2014): 594-597.

[208]

K. D. Dubois, H. He, C. Liu, A. S. Vorushilov, and G. Li, “Covalent Attachment of a Molecular CO2-Reduction Photocatalyst to Mesoporous Silica,” Journal of Molecular Catalysis A: Chemical 363-364 (2012): 208-213.

[209]

G. Liu, H. Chen, H. Zhao, et al., “Accelerating Electroenzymatic CO2 Reduction by Immobilizing Formate Dehydrogenase on Polyethylenimine-Modified Mesoporous Silica,” ACS Sustainable Chemistry & Engineering 10, no. 1 (2022): 633-644.

[210]

X. Xuan, S. Tu, H. Yu, et al., “Size-Dependent Selectivity and Activity of CO2 Photoreduction Over Black Nano-Titanias Grown on Dendritic Porous Silica Particles,” Applied Catalysis, B: Environmental 255 (2019): 117768.

[211]

Z. Jiang, Y. Li, Q. Zhang, et al., “A Novel Nanocomposite of Mesoporous Silica Supported Ni Nanocrystals Modified by Ceria Clusters With Extremely High Light-to-Fuel Efficiency for UV-Vis-IR Light-Driven CO2 Reduction,” Journal of Materials Chemistry A 7, no. 9 (2019): 4881-4892.

[212]

X. Wu, W. W. Weare, and H. Frei, “Binuclear TiOMn Charge-Transfer Chromophore in Mesoporous Silica,” Dalton Transactions no. 45 (2009): 10114-10121.

[213]

P. Usubharatana, D. McMartin, A. Veawab, et al., “Photocatalytic Process for CO2 Emission Reduction From Industrial Flue Gas Streams,” Industrial & Engineering Chemistry Research 45, no. 8 (2006): 2558-2568.

[214]

H. Yamashita, Y. Fujii, Y. Ichihashi, et al., “Selective Formation of CH3OH in the Photocatalytic Reduction of CO2 With H2O on Titanium Oxides Highly Dispersed Within Zeolites and Mesoporous Molecular Sieves,” Catalysis Today 45, no. 1-4 (1998): 221-227.

[215]

K. Ikeue, S. Nozaki, M. Ogawa, and M. Anpo, “Characterization of Self-Standing Ti-Containing Porous Silica Thin Films and Their Reactivity for the Photocatalytic Reduction of CO2 With H2O,” Catalysis Today 74, no. 3-4 (2002): 241-248.

[216]

Y. Shioya, K. Ikeue, M. Ogawa, and M. Anpo, “Synthesis of Transparent Ti-Containing Mesoporous Silica Thin Film Materials and Their Unique Photocatalytic Activity for the Reduction of CO2 With H2O,” Applied Catalysis, A: General 254, no. 2 (2003): 251-259.

[217]

N. Sasirekha, S. Basha, and K. Shanthi, “Photocatalytic Performance of Ru Doped Anatase Mounted on Silica for Reduction of Carbon Dioxide,” Applied Catalysis, B: Environmental 62, no. 1 (2006): 169-180.

[218]

L. Wu, V. Degirmenci, P. C. M. M. Magusin, N. J. H. G. M. Lousberg, and E. J. M. Hensen, “Mesoporous SSZ-13 Zeolite Prepared by a Dual-Template Method With Improved Performance in the Methanol-to-Olefins Reaction,” Journal of Catalysis 298 (2013): 27-40.

[219]

S. W. Jo, B. S. Kwak, K. M. Kim, et al., “Effectively CO2 Photoreduction to CH4 by the Synergistic Effects of Ca and Ti on Ca-Loaded TiSiMCM-41 Mesoporous Photocatalytic Systems,” Applied Surface Science 355 (2015): 891-901.

[220]

W. Kim and H. Frei, “Directed Assembly of Cuprous Oxide Nanocatalyst for CO2 Reduction Coupled to Heterobinuclear ZrOCoII Light Absorber in Mesoporous Silica,” ACS Catalysis 5, no. 9 (2015): 5627-5635.

[221]

M. Tasbihi, F. Fresno, U. Simon, et al., “On the Selectivity of CO2 Photoreduction Towards CH4 Using Pt/TiO2 Catalysts Supported on Mesoporous Silica,” Applied Catalysis, B: Environmental 239 (2018): 68-76.

[222]

L. Davydov, E. P. Reddy, P. France, and P. G. Smirniotis, “Transition-Metal-Substituted Titania-Loaded MCM-41 as Photocatalysts for the Degradation of Aqueous Organics in Visible Light,” Journal of Catalysis 203, no. 1 (2001): 157-167.

[223]

J. Reboul, S. Furukawa, N. Horike, et al., “Mesoscopic Architectures of Porous Coordination Polymers Fabricated by Pseudomorphic Replication,” Nature Materials 11, no. 8 (2012): 717-723.

[224]

Y. Geng, X. Wang, W. Chen, Q. Cai, C. Nan, and H. Li, “Synthesis, Characterization and Application of Novel Bicontinuous Mesoporous Silica With Hierarchical Pore Structure,” Materials Chemistry and Physics 116, no. 1 (2009): 254-260.

[225]

Y. Wang, M. Chen, D. Li, et al., “Mesoporous Silica Hybrids as an Antireflective Coating to Enhance Light Harvesting and Achieve Over 16% Efficiency of Organic Solar Cells,” Journal of Materials Chemistry C 7, no. 47 (2019): 14962-14969.

[226]

C. Sun, Y. Zhang, C. Ruan, et al., “Efficient and Stable White LEDs With Silica-Coated Inorganic Perovskite Quantum Dots,” Advanced Materials 28, no. 45 (2016): 10088-10094.

[227]

B. Tang, X. Zhao, L. J. Ruan, C. Qin, A. Shu, and Y. Ma, “A Universal Synthesis Strategy for Stable CsPbX3@Oxide Core-Shell Nanoparticles Through Bridging Ligands,” Nanoscale 13, no. 23 (2021): 10600-10607.

[228]

C. Meng, D. Yang, Y. Wu, X. Zhang, H. Zeng, and X. Li, “Synthesis of Single CsPbBr3@SiO2 Core-Shell Particles via Surface Activation,” Journal of Materials Chemistry C 8, no. 48 (2020): 17403-17409.

[229]

V. Gentili, S. Panero, P. Reale, and B. Scrosati, “Composite Gel-Type Polymer Electrolytes for Advanced, Rechargeable Lithium Batteries,” Journal of Power Sources 170, no. 1 (2007): 185-190.

[230]

C.-W. Nan, L. Fan, Y. Lin, and Q. Cai, “Enhanced Ionic Conductivity of Polymer Electrolytes Containing Nanocomposite SiO2 Particles,” Physical Review Letters 91, no. 26 (2003): 266104.

[231]

E. G. Vrieling, T. P. M. Beelen, R. A. van Santen, et al., “Diatom Silicon Biomineralization as an Inspirational Source of New Approaches to Silica Production,” Progress in Industrial Microbiology 35 (1999): 39-51.

[232]

R. J. White, R. Luque, V. L. Budarin, J. H. Clark, and D. J. Macquarrie, “Supported Metal Nanoparticles on Porous Materials. Methods and Applications,” Chemical Society Reviews 38, no. 2 (2009): 481-494.

[233]

Q. Zhang, Y. Wu, M. Wang, S. Zhuo, H. Wang, and X. Ge, “Synthesis and Photocatalytic Performance of Recyclable Core-Shell Mesoporous Fe3O4@Bi2WO6 Nanoparticles,” Materials Research Bulletin 113 (2019): 223-230.

[234]

M. T. P. da Silva, J. Villarroel-Rocha, C. F. Toncón-Leal, et al., “Textural and Photocatalytic Characteristics of Iron-Cobalt Based Nanocomposites Supported on SBA-15: Synergistic Effect Between Fe2+ and Fe0 on Photoactivity,” Microporous and Mesoporous Materials 310 (2021): 110582.

[235]

K. Dong, S. Wu, B. Chang, and T. Sun, “Zero-Valent Iron Supported by Dendritic Mesoporous Silica Nanoparticles to Purify Dye Wastewater,” Journal of Environmental Chemical Engineering 11, no. 5 (2023): 110434.

[236]

M. Ramírez-Hernández, J. Cox, B. Thomas, and T. Asefa, “Nanomaterials for Removal of Phenolic Derivatives From Water Systems: Progress and Future Outlooks,” Molecules 28, no. 18 (2023): 6568.

[237]

J. Wang, W. Xiao, H. Teng, et al., “Cu2O/Hollow Mesoporous Silica Composites for the Rapid and Efficient Removal of Methylene Blue,” Environmental Technology 41, no. 17 (2020): 2157-2164.

[238]

M. Brigante and P. C. Schulz, “Remotion of the Antibiotic Tetracycline by Titania and Titania-Silica Composed Materials,” Journal of Hazardous Materials 192, no. 3 (2011): 1597-1608.

[239]

W. Yang, L. Zhang, J. Xie, et al., “Enhanced Photoexcited Carrier Separation in Oxygen-Doped ZnIn2S4 Nanosheets for Hydrogen Evolution,” Angewandte Chemie International Edition 55, no. 23 (2016): 6716-6720.

[240]

K. Kawamoto and B. Lu, “Gasification and Reforming of Biomass and Waste Samples by Means of a Novel Catalyst,” Journal of Material Cycles and Waste Management 18, no. 4 (2016): 646-654.

[241]

C. Zhou, J. Wu, Y. Li and H. Cao, “Highly Efficient UV-Visible-Infrared Light-Driven Photothermocatalytic Steam Biomass Reforming to H2 on Ni Nanoparticles Loaded on Mesoporous Silica,” Energy & Environmental Science 15, no 7 (2022): 3041-3050.

[242]

N. Inoue, T. Tada, and K. Kawamoto, “Gas Reforming and Tar Decomposition Performance of Nickel Oxide (NiO)/SBA-15 Catalyst in Gasification of Woody Biomass,” Journal of the Air & Waste Management Association 69, no. 4 (2019): 502-512.

[243]

M. Cai, Z. Wu, Z. Li, et al., “Greenhouse-Inspired Supra-Photothermal CO2 Catalysis,” Nature Energy 6, no. 8 (2021): 807-814.

[244]

S. Thangudu, C. H. Wu, and K. C. Hwang, “Photocatalytic Dinitrogen Reduction to Ammonia Over Biomimetic Femosx Nanosheets,” ACS Omega 9, no. 18 (2024): 20629-20635.

[245]

X. Li, S. Wang, X. Wang, Y. Luan, D. Wang, and X. Du, “Dual-Propelled Polydopamine@SiO2@Pt Micromotor With Asymmetrical Yolk-Mesoporous Shell for the Enhanced Catalytic Reduction,” Materials Today Chemistry 35 (2024): 101916.

[246]

S. Schünemann, G. Dodekatos, and H. Tüysüz, “Mesoporous Silica Supported Au and AuCu Nanoparticles for Surface Plasmon Driven Glycerol Oxidation,” Chemistry of Materials 27, no. 22 (2015): 7743-7750.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/