Stabilized Conductive Agent/Sulfide Solid Electrolyte Interface via a Halide Solid Electrolyte Coating for All-Solid-State Batteries
Seungwoo Lee , Hyungjun Lee , Seungmin Han , Yeseung Lee , Seho Sun , Jaeik Kim , Joonhyeok Park , Seunggun Choi , Jiwoon Kim , Jinhee Jung , Jinwoo Jeong , Taeseup Song , Ungyu Paik
Carbon Energy ›› 2025, Vol. 7 ›› Issue (8) : e70051
Stabilized Conductive Agent/Sulfide Solid Electrolyte Interface via a Halide Solid Electrolyte Coating for All-Solid-State Batteries
All-solid-state batteries (ASSBs) have garnered significant interest as the next-generation in battery technology, praised for their superior safety and high energy density. However, a conductive agent accelerates the undesirable side reactions of sulfide-based solid electrolytes, resulting in poor electrochemical properties with increased interfacial resistance. Here, we propose a wet chemical method rationally designed to achieve a conformal coating of lithium–indium chloride (Li3InCl6) onto vapor-grown carbon fibers (VGCFs) as conductive agents. First, with the advantage of the Li3InCl6 protective layer, use of VGCF@Li3InCl6 leads to enhanced interfacial stability and improved electrochemical properties, including stable cycle performance. These results indicate that the Li3InCl6 protective layer suppresses the unwanted reaction between Li6PS5Cl and VGCF. Second, VGCF@Li3InCl6 effectively promotes polytetrafluoroethylene fibrillization, leading to a homogeneous electrode microstructure. The uniform distribution of the cathode active material in the electrode results in reduced charge-transfer resistance and enhanced Li-ion kinetics. As a result, a full cell with the LiNixMnyCozO2/VGCF@Li3InCl6 electrode shows an areal capacity of 7.7 mAh cm−2 at 0.05 C and long-term cycle stability of 77.9% over 400 cycles at 0.2 C. This study offers a strategy for utilizing stable carbon-based conductive agents in sulfide-based ASSBs to enhance their electrochemical performance.
all-solid-state batteries / conductive agent / halide solid electrolyte / protection layer / solvent-free electrode / sulfide solid electrode
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |