A Dual-Phase Pore Engineering Strategy to Enhance Low-Voltage Plateau Capacity of Hard Carbon for Sodium-Ion Batteries
Wei Zhao , Shuai Zhang , Haihong Lai , Wenxiu He , Boon Kar Yap , Usisipho Feleni , Xinwen Peng , Jinlong Cui , Linxin Zhong
Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70047
A Dual-Phase Pore Engineering Strategy to Enhance Low-Voltage Plateau Capacity of Hard Carbon for Sodium-Ion Batteries
Hard carbon is the most commercially viable anode material for sodium-ion batteries (SIBs), and yet, its practical implementation remains constrained by insufficient low-voltage plateau capacity, a critical parameter governing storage capacity. This study introduces a targeted component removal and chemical etching strategy to precisely tailor the porous structure of hard carbon and thus remarkably enhance the plateau capacity. In this strategy, alkaline-dissolved components are removed to form a closed-pore core with tunable size. Subsequently, the in situ occupied alkaline engineers the pore structure through chemical etching. The optimized hard carbon material not only has short-range disordered graphite domains to facilitate Na+ ions' intercalation and deintercalation but also has abundant micropores and closed-pore structures with appropriate pore sizes and an ultrathin carbon layer (1−3 layers) to significantly increase the sodium storage sites. The resulting hard carbon delivers a high reversible specific capacity of 389.6 mAh g−1 with a low-voltage plateau capacity as high as up to 261.5 mAh g−1 and an initial Coulombic efficiency of 90.7%. Crucially, this cost-effective methodology shows broad precursor adaptability across lignocellulosic biomass, establishing a universal paradigm for designing high-performance carbonaceous anodes for SIBs.
biomass / hard carbon / porous structure / sodium-ion battery
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |