Single Metal-Embedded Nitrogen Heterocycle Aromatic Catalysts for Efficient and Selective Two-Electron Water Electrolysis Toward Hydrogen Peroxide
Pengting Sun , Jiaxiang Qiu , Jinlong Wu , Daoxiong Wu , Ruirui Wang , Xiaohong Yan , Yangyang Wan , Xiaojun Wu
Carbon Energy ›› 2025, Vol. 7 ›› Issue (8) : e70042
Single Metal-Embedded Nitrogen Heterocycle Aromatic Catalysts for Efficient and Selective Two-Electron Water Electrolysis Toward Hydrogen Peroxide
Hydrogen peroxide (H2O2) is an eco-friendly chemical with widespread industrial applications. However, the commercial anthraquinone process for H2O2 production is energy-intensive and environmentally harmful, highlighting the need for more sustainable alternatives. The electrochemical production of H2O2 via the two-electron water oxidation reaction (2e⁻ WOR) presents a promising route but is often hindered by low efficiency and selectivity, due to the competition with the oxygen evolution reaction. In this study, we employed high-throughput computational screening and microkinetic modeling to design a series of efficient 2e⁻ WOR electrocatalysts from a library of 240 single-metal-embedded nitrogen heterocycle aromatic molecules (M-NHAMs). These catalysts, primarily comprising post-transition metals, such as Cu, Ni, Zn, and Pd, exhibit high activity for H2O2 conversion with a limiting potential approaching the optimal value of 1.76 V. Additionally, they exhibit excellent selectivity, with Faradaic efficiencies exceeding 80% at overpotentials below 300 mV. Structure-performance analysis reveals that the d-band center and magnetic moment of the metal center correlated strongly with the oxygen adsorption free energy ((ΔGO*), suggesting these parameters as key catalytic descriptors for efficient screening and performance optimization. This study contributes to the rational design of highly efficient and selective electrocatalysts for electrochemical production of H2O2, offering a sustainable solution for green energy and industrial applications.
high-throughput computation / hydrogen peroxide / microkinetic modeling / single-atom catalyst / two-electron water oxidation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |