Effect of Cation Contamination of Gas Diffusion Layer on Water Management and Performance of PEMFCs

Huibing Chen , Jiashun Zhang , Hanwen Zhang , Zhengnan Li , Ming Chen , Haijiang Wang

Carbon Energy ›› 2025, Vol. 7 ›› Issue (8) : e70038

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (8) : e70038 DOI: 10.1002/cey2.70038
RESEARCH ARTICLE

Effect of Cation Contamination of Gas Diffusion Layer on Water Management and Performance of PEMFCs

Author information +
History +
PDF

Abstract

The efficient and stable operation of proton exchange membrane fuel cells (PEMFCs) in practical applications can be adversely affected by various contaminants. This study delves into the impact of Cr2(SO4)3 contamination on the gas diffusion layer (GDL) and PEMFC performance, systematically analyzing the physicochemical property changes and their correlation with electrochemical performance. The results indicate that after post-treatment, the GDL surface exhibited exposed carbon fibers, cracks, and large pores in the microporous layer (MPL), with a noticeable detachment of PTFE. There was a marked reduction in C and F element signals, an increase in O element signals, deposition of Cr2(SO4)3, formation of C=O and C=C bonds, appearance of Cr2(SO4)3 characteristic peaks, and changes in pore structure—all suggesting significant alterations in the GDL's surface morphology, structure, and chemical composition. The decline in mechanical strength and thermal stability, and increased surface roughness and resistance negatively impacted fuel cell performance. At high current densities, the emergence of water flooding increased mass transfer resistance from 0.1 Ω cm2 to 1.968 Ω cm2, with a maximum power density decay rate reaching 71.17%. This study reveals the significant negative impact of Cr2(SO4)3 contamination on GDL and fuel cell performance, highlighting that changes in surface structure, reduced hydrophobicity, and increased mass transfer resistance are primary causes of performance degradation. The findings provide crucial insights for improving GDL materials, optimizing fuel cell manufacturing and operation processes, and addressing contamination issues in practical applications.

Keywords

Cr2(SO4)3 contamination / mass transfer resistance / performance degradation / surface structure / water management

Cite this article

Download citation ▾
Huibing Chen, Jiashun Zhang, Hanwen Zhang, Zhengnan Li, Ming Chen, Haijiang Wang. Effect of Cation Contamination of Gas Diffusion Layer on Water Management and Performance of PEMFCs. Carbon Energy, 2025, 7(8): e70038 DOI:10.1002/cey2.70038

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Seselj, D. Aili, S. Celenk, et al., “Performance Degradation and Mitigation of High Temperature Polybenzimidazole-Based Polymer Electrolyte Membrane Fuel Cells,” Chemical Society Reviews 52, no. 12 (2023): 4046-4070.

[2]

P. Sarkezi-Selsky, H. Schmies, A. Latz, and T. Jahnke, “Lattice Boltzmann Simulation of Liquid Water Transport in Gas Diffusion Layers of Proton Exchange Membrane Fuel Cells: Impact of Gas Diffusion Layer and Microporous Layer Degradation on Effective Transport Properties,” Journal of Power Sources 556, no. 1 (2023): 232415.

[3]

S. S. Chougule, A. A. Jeffery, S. Roy Chowdhury, et al., “Antipoisoning Catalysts for the Selective Oxygen Reduction Reaction at the Interface Between Metal Nanoparticles and the Electrolyte,” Carbon Energy 5, no. 7 (2023): e293.

[4]

A. G. Olabi, T. Wilberforce, and M. A. Abdelkareem, “Fuel Cell Application in the Automotive Industry and Future Perspective,” Energy 214, no. 1 (2021): 118955.

[5]

A. Ferrara, S. Jakubek, and C. Hametner, “Energy Management of Heavy-Duty Fuel Cell Vehicles in Real-World Driving Scenarios: Robust Design of Strategies to Maximize the Hydrogen Economy and System Lifetime,” Energy Conversion and Management 232, no. 15 (2021): 113795.

[6]

S. B. Mousavi, P. Ahmadi, and M. Raeesi, “Performance Evaluation of a Hybrid Hydrogen Fuel Cell/Battery Bus With Fuel Cell Degradation and Battery Aging,” Renewable Energy 227, no. 15 (2024): 120456.

[7]

P. Lin, J. Sun, C. He, M. Wu, and T. Zhao, “Quadrilateral-Patterned Perforated Gas Diffusion Layers Boost the Performance of Fuel Cells,” ACS Energy Letters 9, no. 4 (2024): 1710-1716.

[8]

C. He, Q. Wen, F. Ning, et al., “A New Integrated GDL With Wavy Channel and Tunneled Rib for High Power Density PEMFC at Low Back Pressure and Wide Humidity,” Advanced Science 10, no. 28 (2023): e2302928.

[9]

H. Tang, L. Wang, P. He, Q. Huang, and X. Wang, “Bulk Hydrophobic Gas Diffusion Layer With Interpenetrating Network for High-Performance Fuel Cells,” Chemical Engineering Journal 495, no. 1 (2024): 152968.

[10]

Q. Zhou, Z. Gao, C. Shen, et al., “Impact of Fuel Cell Operating Potentials on Carbon Corrosion in Carbon Papers: Structural and Surface Characteristics,” Energy & Fuels 39, no. 3 (2025): 1759-1767.

[11]

G. E. E. Aquah, D. Niblett, J. Shokri, and V. Niasar, “Characterisation of Hydraulic Properties of Commercial Gas Diffusion Layers: Toray, SGL, MGL, Woven Carbon Cloth,” Scientific Reports 14, no. 1 (2024): 18812.

[12]

X. Fu, Q. Wen, J. Han, et al., “One-Step to Prepare High-Performance Gas Diffusion Layer (GDL) With Three Different Functional Layers for Proton Exchange Membrane Fuel Cells (PEMFCs),” International Journal of Hydrogen Energy 47, no. 61 (2022): 25769-25779.

[13]

F. C. Lee, M. S. Ismail, D. B. Ingham, et al., “Alternative Architectures and Materials for PEMFC Gas Diffusion Layers: A Review and Outlook,” Renewable and Sustainable Energy Reviews 166, no. 3 (2022): 112640.

[14]

R. Lin, S. Tang, X. Diao, et al., “Detailed Optimization of Multiwall Carbon Nanotubes Doped Microporous Layer in Polymer Electrolyte Membrane Fuel Cells for Enhanced Performance,” Applied Energy 274, no. 15 (2020): 115214.

[15]

Y.-Y. Li, T.-T. Yao, X.-F. Zhang, Y. T. Liu, X. Wang, and G. P. Wu, “An Ultrathin Substrate-Free Gas Diffusion Layer for Proton Exchange Membrane Fuel Cell,” International Journal of Hydrogen Energy 55, no. 15 (2024): 675-682.

[16]

J. Wu, J. J. Martin, F. P. Orfino, et al., “In Situ Accelerated Degradation of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cellpart I: Effect of Elevated Temperature and Flow Rate,” Journal of Power Sources 195, no. 7 (2010): 1888-1894.

[17]

G. Athanasaki, A. Jayakumar, and A. M. Kannan, “Gas Diffusion Layers for PEM Fuel Cells: Materials, Properties and Manufacturing - A Review,” International Journal of Hydrogen Energy 48, no. 6 (2023): 2294-2313.

[18]

J. Lee, H. Lee, J. H. Kim, T. A. Pham, S. Jang, and S. M. Kim, “Investigation of Optimized Spraying Process for Directly Coated Electrode in Polymer Electrolyte Membrane Fuel Cell,” Journal of Industrial and Engineering Chemistry 132, no. 25 (2024): 474-481.

[19]

S. Latorrata, P. Gallo Stampino, C. Cristiani, and G. Dotelli, “Development of an Optimal Gas Diffusion Medium for Polymer Electrolyte Membrane Fuel Cells and Assessment of Its Degradation Mechanisms,” International Journal of Hydrogen Energy 40, no. 42 (2015): 14596-14608.

[20]

Y. Yang, X. Zhou, B. Li, and C. Zhang, “Recent Progress of the Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells: Material and Structure Designs of Microporous Layer,” International Journal of Hydrogen Energy 46, no. 5 (2021): 4259-4282.

[21]

Q. Wen, S. Pan, Y. Li, et al., “Janus Gas Diffusion Layer for Enhanced Water Management in Proton Exchange Membrane Fuel Cells (PEMFCs),” ACS Energy Letters 7, no. 11 (2022): 3900-3909.

[22]

E. Wallnöfer-Ogris, F. Poimer, R. Köll, M. G. Macherhammer, and A. Trattner, “Main Degradation Mechanisms of Polymer Electrolyte Membrane Fuel Cell Stacks - Mechanisms, Influencing Factors, Consequences, and Mitigation Strategies,” International Journal of Hydrogen Energy 50, no. 2 (2024): 1159-1182.

[23]

Z. Jia, Y. Yuan, Y. Zhang, et al., “Optimizing 3d Spin Polarization of CoOOH by In Situ Mo Doping for Efficient Oxygen Evolution Reaction,” Carbon Energy 6, no. 1 (2023): e418.

[24]

Y. Li, X. Wang, Y. Wang, et al., “The Decisive Role of Adsorbed OH* in Low-Potential Co Electro-Oxidation on Single-Atom Catalytic Sites,” Carbon Energy 5, no. 9 (2023): e310.

[25]

A. Ozden, S. Shahgaldi, J. Zhao, X. Li, and F. Hamdullahpur, “Degradations in Porous Components of a Proton Exchange Membrane Fuel Cell Under Freeze-Thaw Cycles: Morphology and Microstructure Effects,” International Journal of Hydrogen Energy 45, no. 5 (2020): 3618-3631.

[26]

M. Shahjahan Kabir Chowdury, Y. Park, S. Bum Park, and Y. Park, “Degradation Mechanisms, Long-Term Durability Challenges, and Mitigation Methods for Proton Exchange Membranes and Membrane Electrode Assemblies With Pt/C Electrocatalysts in Low-Temperature and High-Temperature Fuel Cells: A Comprehensive Review,” Journal of Electroanalytical Chemistry 975, no. 15 (2024): 118712.

[27]

V. Radhakrishnan and P. Haridoss, “Effect of Cyclic Compression on Structure and Properties of a Gas Diffusion Layer Used in PEM Fuel Cells,” International Journal of Hydrogen Energy 35, no. 20 (2010): 11107-11118.

[28]

S. A. Atyabi, E. Afshari, S. Wongwises, W. M. Yan, A. Hadjadj, and M. S. Shadloo, “Effects of Assembly Pressure on PEM Fuel Cell Performance by Taking Into Accounts Electrical and Thermal Contact Resistances,” Energy 179, no. 15 (2019): 490-501.

[29]

A. H. Mahmoudi, A. Ramiar, and Q. Esmaili, “Effect of Inhomogeneous Compression of Gas Diffusion Layer on the Performance of PEMFC With Interdigitated Flow Field,” Energy Conversion and Management 110, no. 15 (2016): 78-89.

[30]

Y. Lee, B. Kim, Y. Kim, and X. Li, “Degradation of Gas Diffusion Layers Through Repetitive Freezing,” Applied Energy 88, no. 12 (2011): 5111-5119.

[31]

X. Zhang, Y. Yang, X. Zhang, and H. Liu, “Identification of Performance Degradations in Catalyst Layer and Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells,” Journal of Power Sources 449, no. 15 (2020): 227580.

[32]

J. Kätzel, H. Markötter, T. Arlt, et al., “Effect of Ageing of Gas Diffusion Layers on the Water Distribution in Flow Field Channels of Polymer Electrolyte Membrane Fuel Cells,” Journal of Power Sources 301, no. 1 (2016): 386-391.

[33]

J. Park, H. Oh, T. Ha, Y. I. Lee, and K. Min, “A Review of the Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells: Durability and Degradation,” Applied Energy 155, no. 1 (2015): 866-880.

[34]

S. Yu, X. Li, J. Li, et al., “Study on Hydrophobicity Degradation of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells,” Energy Conversion and Management 76, no. 15 (2013): 301-306.

[35]

K. Xu, Q. Di, F. Sun, M. Chen, and H. Wang, “Degradation Mechanism Analysis of Substrate and Microporous Layer of Gas Diffusion Layer in Proton Exchange Membrane Fuel Cell,” Fuel 358, no. 15 (2024): 130198.

[36]

T. Ha, J. Cho, J. Park, et al., “Experimental Study on Carbon Corrosion of the Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells,” International Journal of Hydrogen Energy 36, no. 19 (2011): 12436-12443.

[37]

T. Arlt, M. Klages, M. Messerschmidt, J. Scholta, and I. Manke, “Influence of Artificially Aged Gas Diffusion Layers on the Water Management of Polymer Electrolyte Membrane Fuel Cells Analyzed With In-Operando Synchrotron Imaging,” Energy 118, no. 1 (2017): 502-511.

[38]

H. Liu, M. G. George, R. Banerjee, et al., “Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers,” Journal of the Electrochemical Society 164, no. 7 (2017): F704-F713.

[39]

M. A. Uddin, J. Park, L. Bonville, and U. Pasaogullari, “Effect of Hydrophobicity of Gas Diffusion Layer in Calcium Cation Contamination in Polymer Electrolyte Fuel Cells,” International Journal of Hydrogen Energy 41, no. 33 (2016): 14909-14916.

[40]

M. A. Uddin, X. Wang, J. Park, U. Pasaogullari, and L. Bonville, “Distributed Effects of Calcium Ion Contaminant on Polymer Electrolyte Fuel Cell Performance,” Journal of Power Sources 296, no. 20 (2015): 64-69.

[41]

C. J. Banas, L. Bonville, and U. Pasaogullari, “Linking Foreign Cationic Contamination of PEM Fuel Cells to the Local Water Distribution,” Journal of the Electrochemical Society 164, no. 12 (2017): F1100-F1109.

[42]

X. Wang, J. Qi, O. Ozdemir, et al., “Ca2+ as an Air Impurity in Polymer Electrolyte Membrane Fuel Cells,” Journal of the Electrochemical Society 161, no. 10 (2014): F1006-F1014.

[43]

F. N. Büchi, M. Inaba and T. J. Schmidt, ed., Polymer Electrolyte Fuel Cell Durability (Springer New York, 2009).

[44]

S. Komini Babu, T. O'Brien, M. J. Workman, M. Wilson, R. Mukundan, and R. Borup, “Editors’ Choice—Diffusion Media for Cation Contaminant Transport Suppression Into Fuel Cell Electrodes,” Journal of the Electrochemical Society 168, no. 2 (2021): 024501.

[45]

R. Cui, Z. Zhang, Y. Wang, et al., “Effect of Cations (Na+, Co2+, Fe3+) Contamination in Nafion Membrane: A Molecular Simulations Study,” International Journal of Hydrogen Energy 50, no. 2 (2024): 635-649.

[46]

H. Chen, H. Liu, M. Chen, and H. Wang, “New Insights Into the Performance and Durability Degradation Mechanisms of PEMFCs Caused by Cr3+ Contaminant,” Fuel 365, no. 1 (2024): 131253.

[47]

H. Chen, M. Chen, and H. Wang, “Nanostructure-Transportation Relation to PEMFCs Activity and Durability Degradation,” Journal of Membrane Science 711, no. 1 (2024): 123164.

[48]

T. Novalin, B. Eriksson, S. Proch, et al., “Trace-Metal Contamination in Proton Exchange Membrane Fuel Cells Caused by Laser-Cutting Stains on Carbon-Coated Metallic Bipolar Plates,” International Journal of Hydrogen Energy 46, no. 26 (2021): 13855-13864.

[49]

M. A. Uddin, X. Wang, J. Qi, et al., “Effect of Chloride on PEFCs in Presence of Various Cations,” Journal of the Electrochemical Society 162, no. 4 (2015): F373-F379.

[50]

X. L. Wang, Z. G. Qu, and G. F. Ren, “Collective Enhancement in Hydrophobicity and Electrical Conductivity of Gas Diffusion Layer and the Electrochemical Performance of PEMFCs,” Journal of Power Sources 575, no. 15 (2023): 233077.

[51]

G. Venkatesh, R. Gnanamoorthy, and M. Okazaki, “Contamination Assessment in Metal Foam Flow Field-Based Proton Exchange Membrane Fuel Cell,” International Journal of Hydrogen Energy 47, no. 12 (2022): 8015-8025.

[52]

J. Yu, D. Froning, U. Reimer, and W. Lehnert, “Apparent Contact Angles of Liquid Water Droplet Breaking Through a Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cell,” International Journal of Hydrogen Energy 43, no. 12 (2018): 6318-6330.

[53]

M. Mortazavi and K. Tajiri, “Liquid Water Breakthrough Pressure Through Gas Diffusion Layer of Proton Exchange Membrane Fuel Cell,” International Journal of Hydrogen Energy 39, no. 17 (2014): 9409-9419.

[54]

Y. Xiao, X. Li, Q. Wang, et al., “A Super Uniform Hydrophobic Gas Diffusion Layer for a Proton Exchange Membrane Fuel Cell,” ACS Applied Materials & Interfaces 15, no. 31 (2023): 38090-38099.

[55]

M. Kang, J. Sim, and K. Min, “Analysis of Surface and Interior Degradation of Gas Diffusion Layer With Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cell,” International Journal of Hydrogen Energy 47, no. 68 (2022): 29467-29480.

[56]

Z. Li, J. Li, W. Zhu, et al., “Effect of Tensile Deformation on Corrosion Behavior of Nitrogen-Containing Stainless Steel Bipolar Plates in a Simulated Environment for Proton Exchange Membrane Fuel Cells,” Corrosion Science 247, no. 1 (2025): 112778.

[57]

P. Ren, P. Pei, D. Chen, et al., “Corrosion of Metallic Bipolar Plates Accelerated by Operating Conditions in a Simulated PEM Fuel Cell Cathode Environment,” Renewable Energy 194, no. 1 (2022): 1277-1287.

[58]

J. Liu, Q. Hu, S. Sabola, Y. Zhang, B. Du, and X. Wang, “Comparative Review of Corrosion-Resistant Coatings on Metal Bipolar Plates of Proton Exchange Membrane Fuel Cells,” International Journal of Minerals, Metallurgy, and Materials 31, no. 12 (2024): 2627-2644.

[59]

J. Ma, B. Zhang, Y. Fu, et al., “Effect of Cold Deformation on Corrosion Behavior of Selective Laser Melted 316 Stainless Steel Bipolar Plates in a Simulated Environment for Proton Exchange Membrane Fuel Cells,” Corrosion Science 201, no. 3 (2022): 110257.

[60]

H. Sun, Z. Xu, D. Zhang, L. Peng, and X. Lai, “Corrosion Behavior of Passivation Layer Cr2O3 of Uncoated Stainless Steel Under the Anodic and Cathodic Conditions: A First-Principles Study,” Chemical Engineering Journal 493, no. 1 (2024): 152658.

[61]

Y. Yang, X. Ning, H. Tang, L. Guo, and H. Liu, “Effects of Passive Films on Corrosion Resistance of Uncoated SS316L Bipolar Plates for Proton Exchange Membrane Fuel Cell Application,” Applied Surface Science 320, no. 30 (2014): 274-280.

[62]

K. Huang, D. Zhang, M. Hu, and Q. Hu, “Cr2O3/C Composite Coatings on Stainless Steel 304 as Bipolar Plate for Proton Exchange Membrane Fuel Cell,” Energy 76, no. 1 (2014): 816-821.

[63]

X. Chen, X. Wang, and D. Fang, “A Review on C1s XPS-Spectra for Some Kinds of Carbon Materials,” Fullerenes, Nanotubes and Carbon Nanostructures 28, no. 12 (2020): 1048-1058.

[64]

L. Yue, W. Li, F. Sun, L. Zhao, and L. Xing, “Highly Hydroxylated Carbon Fibres as Electrode Materials of All-Vanadium Redox Flow Battery,” Carbon 48, no. 11 (2010): 3079-3090.

[65]

Y. G. Lei, K. M. Ng, L. T. Weng, C. M. Chan, and L. Li, “XPS C 1s Binding Energies for Fluorocarbon-Hydrocarbon Microblock Copolymers,” Surface and Interface Analysis 35, no. 10 (2003): 852-855.

[66]

Z. Wang, Y. Chen, B. Sheng, et al., “Air-Promoted Light-Driven Hydrogen Production From Bioethanol Over Core-Shell Nanoarchitecture,” Angewandte Chemie International Edition 63, no. 16 (2024): e202400011.

[67]

J. M. Edjokola, M. Heidinger, A. M. Niroumand, V. Hacker, and M. Bodner, “Chemical Oxidation-Induced Degradation in Gas Diffusion Layers for PEFC: Mechanisms and Performance Implications,” Journal of the Electrochemical Society 171, no. 9 (2024): 094507.

[68]

C. Moreno-Castilla, M. V. López-Ramón, and F. Carrasco-Marı́n, “Changes in Surface Chemistry of Activated Carbons by Wet Oxidation,” Carbon 38, no. 1 (2000): 1995-2001.

[69]

E. Fuente, J. A. Menéndez, M. A. Díez, D. Suárez, and M. A. Montes-Morán, “Infrared Spectroscopy of Carbon Materials: A Quantum Chemical Study of Modelcompounds,” Journal of Physical Chemistry B 107, no. 26 (2003): 6350-6359.

[70]

M. G. Tsegay, H. G. Gebretinsae, and Z. Y. Nuru, “Structural and Optical Properties of Green Synthesized Nanoparticles,” Materials Today: Proceedings 36, no. 2 (2021): 587-590.

[71]

J. Sackey, M. R. Morad, A. K. H. Bashir, L. Kotsedi, C. Kaonga, and M. Maaza, “Bio-Synthesised Black Α-Cr2O3 Nanoparticles; Experimental Analysis and Density Function Theory Calculations,” Journal of Alloys and Compounds 850, no. 5 (2021): 156671.

[72]

J. Piwowarczyk, R. Jędrzejewski, D. Moszyński, K. Kwiatkowski, A. Niemczyk, and J. Baranowska, “XPS and FTIR Studies of Polytetrafluoroethylene Thin Films Obtained by Physical Methods,” Polymers 11, no. 10 (2019): 1629.

[73]

M. G. Tsegay, H. G. Gebretinsae, G. G. Welegergs, M. Maaza, and Z. Y. Nuru, “Novel Green Synthesized Cr2O3 for Selective Solar Absorber: Investigation of Structural, Morphological, Chemical, and Optical Properties,” Solar Energy 236, no. 1 (2022): 308-319.

[74]

M. Testa-Anta, J. N. Majcherkiewicz, K. Xu, A. R. Goñi, and V. Salgueiriño, “Room Temperature Spin-Phonon Coupling in Cr2O3 Nanocrystals,” Advanced Functional Materials 33, no. 33 (2023): 2301973.

[75]

T. Larbi, B. Ouni, A. Gantassi, K. Doll, M. Amlouk, and T. Manoubi, “Structural, Optical and Vibrational Properties of Cr2O3 With Ferromagnetic and Antiferromagnetic Order: A Combined Experimental and Density Functional Theory Study,” Journal of Magnetism and Magnetic Materials 444, no. 15 (2017): 16-22.

[76]

L. Xiao, M. Bian, L. Zhu, et al., “High-Density and Low-Density Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells: Comparison of Mechanical and Transport Properties,” International Journal of Hydrogen Energy 47, no. 53 (2022): 22532-22544.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

37

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/