Constructive Strategy of Amine Functionalization on Cu−In−Zn−S With N→Cu Coordination for Efficacious Photocatalytic Hydrogen Evolution

Mengmeng Ma , Runkang Lin , Kaige Huang , Shizhong Yue , Maohong Fan , Zhijie Wang , Shengchun Qu

Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70029

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (10) : e70029 DOI: 10.1002/cey2.70029
RESEARCH ARTICLE

Constructive Strategy of Amine Functionalization on Cu−In−Zn−S With N→Cu Coordination for Efficacious Photocatalytic Hydrogen Evolution

Author information +
History +
PDF

Abstract

Functionalization has emerged as a pivotal endeavor to tailor the surface properties of photocatalysts. We propose a facile amine functionalization strategy to establish a Cu−In−Zn−S (CIZS)/NiSx hybrid with covalent bonds using individual ethylenediamine (EDA) molecules. Our approach witnesses a remarkable photocatalytic hydrogen evolution (PHE) competence of 65.93 mmol g−1 h−1 driven by visible light, the highest value yielded by CIZS to date. X-ray absorption spectra of CIZS and density functional theory (DFT) calculations confirm the crucial amine N→Cu coordination after amine functionalization. The new emerging coordination via lone-pair electron donation profitably accesses the regulation of the coordination environment, electronic structures, and carrier behavior. Moreover, individual EDA molecule with two-terminal −NH2 group serves as a molecular bridge to hybrid CIZS and NiSx cocatalyst via N→Cu and N→Ni coordination, favorably promoting efficient charge transport. This study provides advances in practical functionalizing photocatalysts.

Keywords

amine functionalization / coordination / Cu−In−Zn−S / molecular bridges / photocatalytic hydrogen evolution

Cite this article

Download citation ▾
Mengmeng Ma, Runkang Lin, Kaige Huang, Shizhong Yue, Maohong Fan, Zhijie Wang, Shengchun Qu. Constructive Strategy of Amine Functionalization on Cu−In−Zn−S With N→Cu Coordination for Efficacious Photocatalytic Hydrogen Evolution. Carbon Energy, 2025, 7(10): e70029 DOI:10.1002/cey2.70029

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Esmaeilirad, Z. Jiang, A. M. Harzandi, et al., “Imidazolium-Functionalized Mo3P Nanoparticles With an Ionomer Coating for Electrocatalytic Reduction of CO2 to Propane,” Nature Energy 8, no. 8 (2023): 891-900.

[2]

N. K. Mehra, V. Mishra, and N. K. Jain, “A Review of Ligand Tethered Surface Engineered Carbon Nanotubes,” Biomaterials 35, no. 4 (2014): 1267-1283.

[3]

Q. Yao, X. Yuan, T. Chen, D. T. Leong, and J. Xie, “Engineering Functional Metal Materials at the Atomic Level,” Advanced Materials 30, no. 47 (2018): 1802751.

[4]

J. Wang, J. Wang, R. Shi, C. Zhou, and T. Zhang, “Facile Fabrication of N-Doped K2Nb2O6 Nanocrystals With Defective Pyrochlore Structure for Improved Visible-Light Photocatalytic Hydrogen Production,” Small Structures 4, no. 1 (2023): 2200105.

[5]

Y. Yan, J. Miao, Z. Yang, et al., “Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications,” Chemical Society Reviews 44, no. 10 (2015): 3295-3346.

[6]

X. Zhang, Y. Wang, M. Gu, et al., “Molecular Engineering of Dispersed Nickel Phthalocyanines on Carbon Nanotubes for Selective CO2 Reduction,” Nature Energy 5, no. 9 (2020): 684-692.

[7]

R. A. Bueno, J. I. Martínez, R. F. Luccas, et al., “Highly Selective Covalent Organic Functionalization of Epitaxial Graphene,” Nature Communications 8 (2017): 15306.

[8]

Q. He, R. Kusumi, S. Kimura, U. J. Kim, and M. Wada, “Cationic Hydrogels Prepared From Regioselectively Azidated (1→3)-α-D-glucan via Crosslinking and Amination: Physical and Adsorption Properties,” Carbohydrate Polymers 245, no. 1 (2020): 116543.

[9]

M. Ma, H. Zhao, Z. Wang, and Y. Lei, “Designing Atomic Interfaces in Chalcogenides for Boosting Photocatalysis,” Solar RRL 7, no. 9 (2023): 2300025.

[10]

C. Ru, P. Chen, X. Wu, et al., “Enhanced Built-in Electric Field Promotes Photocatalytic Hydrogen Performance of Polymers Derived From the Introduction of B←N Coordination Bond,” Advanced Science 9, no. 35 (2022): 2204055.

[11]

X. Chen and A. R. McDonald, “Functionalization of Two-Dimensional Transition-Metal Dichalcogenides,” Advanced Materials 28, no. 27 (2016): 5738-5746.

[12]

R. K. Mohamed, P. W. Peterson, and I. V. Alabugin, “Concerted Reactions That Produce Diradicals and Zwitterions: Electronic, Steric, Conformational, and Kinetic Control of Cycloaromatization Processes,” Chemical Reviews 113, no. 9 (2013): 7089-7129.

[13]

J. Zhou, P. Yang, P. A. Kots, et al., “Tuning the Reactivity of Carbon Surfaces With Oxygen-Containing Functional Groups,” Nature Communications 14 (2023): 2293.

[14]

B. Kaur, V. Soni, R. Kumar, et al., “Recent Advances in Manipulating Strategies of NH2-Functionalized Metallic Organic Frameworks-Based Heterojunction Photocatalysts for the Sustainable Mitigation of Various Pollutants,” Environmental Research 259, no. 15 (2024): 119575.

[15]

H. Liu, J. Hu, C. Hu, S. Hussain, and F. Jiao, “Unraveling the Dual-Capture Strategy in Surface-Grafted −NH2 on N-Defected g-C3N5 for Enhanced Photocatalytic Hydrogen Production,” Industrial & Engineering Chemistry Research 63, no. 47 (2024): 20621-20632.

[16]

P. Pachfule, A. Acharjya, J. Roeser, et al., “Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation,” Journal of the American Chemical Society 140, no. 4 (2018): 1423-1427.

[17]

A. Cheruvathoor Poulose, M. Medveď, V. R. Bakuru, et al., “Acidic Graphene Organocatalyst for the Superior Transformation of Wastes Into High-Added-Value Chemicals,” Nature Communications 14 (2023): 1373.

[18]

H. Li, P. Wang, X. Yi, and H. Yu, “Edge-Selectively Amidated Graphene for Boosting H2-Evolution Activity of TiO2 Photocatalyst,” Applied Catalysis, B: Environmental 264 (2020): 118504.

[19]

H. Park and S. Park, “Enhancing the Alkaline Hydrogen Evolution Reaction of Graphene Quantum Dots by Ethylenediamine Functionalization,” ACS Applied Materials & Interfaces 14, no. 23 (2022): 26733-26741.

[20]

E. Subbotina, F. Ram, S. V. Dvinskikh, L. A. Berglund, and P. Olsén, “Aqueous Synthesis of Highly Functional, Hydrophobic, and Chemically Recyclable Cellulose Nanomaterials Through Oxime Ligation,” Nature Communications 13 (2022): 6924.

[21]

M. Fan, Z. Wang, K. Sun, et al., “N-B-OH Site-Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production,” Advanced Materials 35, no. 17 (2023): 2209086.

[22]

F. Ma, Q. Tang, S. Xi, et al., “Benzimidazole-Based Covalent Organic Framework Embedding Single-Atom Pt Sites for Visible-Light-Driven Photocatalytic Hydrogen Evolution,” Chinese Journal of Catalysis 48 (2023): 137-149.

[23]

H. Zhong, S. Chen, Z. Jiang, et al., “Utilizing Metal-Thiocatecholate Functionalized UiO-66 Framework for Photocatalytic Hydrogen Evolution Reaction,” Small 19, no. 17 (2023): 2207266.

[24]

H. Gu, Z. Lin, Y. Li, D. Wang, and H. Feng, “Research Progress of NiS Cocatalysts in Photocatalysis,” Physica status solidi (a) 221, no. 10 (2024): 2400187.

[25]

X. Y. Liu, G. Zhang, H. Chen, et al., “Efficient Defect-Controlled Photocatalytic Hydrogen Generation Based on Near-Infrared Cu-In-Zn-S Quantum Dots,” Nano Research 11, no. 3 (2018): 1379-1388.

[26]

L. Wu, Q. Wang, T. T. Zhuang, et al., “Single Crystalline Quaternary Sulfide Nanobelts for Efficient Solar-to-Hydrogen Conversion,” Nature Communications 11 (2020): 5194.

[27]

P. Wang, Z. Shen, Y. Xia, et al., “Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Few-Layer Cu-ZnIn2S4,” Advanced Functional Materials 29, no. 3 (2019): 1807013.

[28]

P. Hu, S. S. Pramana, S. Cao, et al., “Ion-Induced Synthesis of Uniform Single-Crystalline Sulphide-Based Quaternary-Alloy Hexagonal Nanorings for Highly Efficient Photocatalytic Hydrogen Evolution,” Advanced Materials 25, no. 18 (2013): 2567-2572.

[29]

X. Tang, Q. Tay, Z. Chen, Y. Chen, G. K. L. Goh, and J. Xue, “CuInZnS-Decorated Graphene Nanosheets for Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production,” Journal of Materials Chemistry A 1, no. 21 (2013): 6359-6465.

[30]

R. Marin and D. Jaque, “Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence,” Chemical Reviews 121, no. 3 (2021): 1425-1462.

[31]

A. F. García, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, “Semiconductor Quantum Dots: Technological Progress and Future Challenges,” Science 373, no. 6555 (2021): eaaz8541.

[32]

B. Su, M. Zheng, W. Lin, et al., “S-Scheme Co9S8@Cd0.8Zn0.2S-Deta Hierarchical Nanocages Bearing Organic CO2 Activators for Photocatalytic Syngas Production,” Advanced Energy Materials 13, no. 15 (2023): 2203290.

[33]

B. Li, W. Wang, J. Zhao, et al., “All-Solid-State Direct Z-Scheme NiTiO3/Cd0.5Zn0.5S Heterostructures for Photocatalytic Hydrogen Evolution With Visible Light,” Journal of Materials Chemistry A 9, no. 16 (2021): 10270-10276.

[34]

H. Su, W. Wang, R. Shi, et al., “Recent Advances in Quantum Dot Catalysts for Hydrogen Evolution: Synthesis, Characterization, and Photocatalytic Application,” Carbon Energy 5, no. 9 (2023): 2096-9570.

[35]

Z. Gao, K. Chen, L. Wang, B. Bai, H. Liu, and Q. Wang, “Aminated Flower-Like ZnIn2S4 Coupled With Benzoic Acid Modified g-C3N4 Nanosheets via Covalent Bonds for Ameliorated Photocatalytic Hydrogen Generation,” Applied Catalysis, B: Environmental 268 (2020): 118462.

[36]

L. Tan, Y. Liu, B. Mao, et al., “Effective Bandgap Narrowing of Cu-In-Zn-S Quantum Dots for Photocatalytic H2 Production via Cocatalyst-Alleviated Charge Recombination,” Inorganic Chemistry Frontiers 5, no. 1 (2018): 258-265.

[37]

Y. Ye, Z. Zang, T. Zhou, et al., “Theoretical and Experimental Investigation of Highly Photocatalytic Performance of CuInZnS Nanoporous Structure for Removing the NO Gas,” Journal of Catalysis 357 (2018): 100-107.

[38]

Q. Pang and L. F. Nazar, “Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host With Intrinsic Polysulfide Adsorption,” ACS Nano 10, no. 4 (2016): 4111-4118.

[39]

X. Wang, X. Wang, J. Huang, S. Li, A. Meng, and Z. Li, “Interfacial Chemical Bond and Internal Electric Field Modulated Z-Scheme SV-ZnIn2S4/MoSe2 Photocatalyst for Efficient Hydrogen Evolution,” Nature Communications 12 (2021): 4112.

[40]

P. Li, Y. Jiao, Y. Ruan, et al., “Revealing the Role of Double-Layer Microenvironments in Ph-Dependent Oxygen Reduction Activity Over Metal-Nitrogen-Carbon Catalysts,” Nature Communications 14 (2023): 6936.

[41]

A. E. S. Van Driessche, N. Van Gerven, P. H. H. Bomans, et al., “Molecular Nucleation Mechanisms and Control Strategies for Crystal Polymorph Selection,” Nature 556, no. 7699 (2018): 89-94.

[42]

G. C. Sosso, J. Chen, S. J. Cox, et al., “Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations,” Chemical Reviews 116, no. 12 (2016): 7078-7116.

[43]

J. Liu and J. Zhang, “Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals,” Chemical Reviews 120, no. 4 (2020): 2123-2170.

[44]

H. L. Wu, R. Sato, A. Yamaguchi, et al., “Formation of Pseudomorphic Nanocages From Cu2O Nanocrystals Through Anion Exchange Reactions,” Science 351, no. 6279 (2016): 1306-1310.

[45]

J. L. Fenton, B. C. Steimle, and R. E. Schaak, “Tunable Intraparticle Frameworks for Creating Complex Heterostructured Nanoparticle Libraries,” Science 360, no. 6388 (2018): 513-517.

[46]

B. C. Steimle, J. L. Fenton, and R. E. Schaak, “Rational Construction of a Scalable Heterostructured Nanorod Megalibrary,” Science 367, no. 6476 (2020): 418-424.

[47]

D. K. Pappas, E. Borfecchia, M. Dyballa, et al., “Methane to Methanol: Structure-Activity Relationships for Cu-CHA,” Journal of the American Chemical Society 139, no. 42 (2017): 14961-14975.

[48]

G. Capocasa, F. Sessa, F. Tavani, et al., “Coupled X-Ray Absorption/UV-vis Monitoring of Fast Oxidation Reactions Involving a Nonheme Iron-Oxo Complex,” Journal of the American Chemical Society 141, no. 6 (2019): 2299-2304.

[49]

Z. Li, J. Liu, J. Zhao, et al., “Photo-Driven Hydrogen Production From Methanol and Water Using Plasmonic Cu Nanoparticles Derived From Layered Double Hydroxides,” Advanced Functional Materials 33, no. 11 (2023): 2213672.

[50]

N. Kong, X. Fan, F. Liu, et al., “Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-Oxidative Propane Dehydrogenation,” ACS Nano 14, no. 5 (2020): 5772-5779.

[51]

D. Leng, X. Li, Y. Lv, et al., “Cesium Immobilization by K-Struvite Crystal in Aqueous Solution: Ab Initio Calculations and Experiments,” Journal of Hazardous Materials 387 (2020): 121872.

[52]

B. Mattiasson, A. Kumar, A. E. Ivanov, and I. Y. Galaev, “Metal-Chelate Affinity Precipitation of Proteins Using Responsive Polymers,” Nature Protocols 2, no. 1 (2007): 213-220.

[53]

J. Hicks, A. Mansikkamäki, P. Vasko, J. M. Goicoechea, and S. Aldridge, “A Nucleophilic Gold Complex,” Nature Chemistry 11, no. 3 (2019): 237-241.

[54]

J. Saavedra, H. A. Doan, C. J. Pursell, L. C. Grabow, and B. D. Chandler, “The Critical Role of Water at the Gold-Titania Interface in Catalytic CO Oxidation,” Science 345, no. 6204 (2014): 1599-1602.

[55]

E. G. Klauber, C. K. De, T. K. Shah, and D. Seidel, “Merging Nucleophilic and Hydrogen Bonding Catalysis: An Anion Binding Approach to the Kinetic Resolution of Propargylic Amines,” Journal of the American Chemical Society 132, no. 39 (2010): 13624-13626.

[56]

S. Stolz, M. Petzoldt, U. Lemmer, et al., “Correlation of Device Performance and Fermi Level Shift in the Emitting Layer of Organic Light-Emitting Diodes With Amine-Based Electron Injection Layers,” ACS Applied Materials & Interfaces 10, no. 10 (2018): 8877-8884.

[57]

L. Yu, R. S. Kokenyesi, D. A. Keszler, and A. Zunger, “Inverse Design of High Absorption Thin-Film Photovoltaic Materials,” Advanced Energy Materials 3, no. 1 (2013): 43-48.

[58]

C. Ye, M. D. Regulacio, S. H. Lim, S. Li, Q. H. Xu, and M. Y. Han, “Alloyed ZnS-CuInS2 Semiconductor Nanorods and Their Nanoscale Heterostructures for Visible-Light-Driven Photocatalytic Hydrogen Generation,” Chemistry - A European Journal 21, no. 26 (2015): 9514-9519.

[59]

Y. Huang, J. Chen, W. Zou, et al., “Enhanced Photocatalytic Hydrogen Evolution Efficiency Using Hollow Microspheres of (CuIn)xZn2(1−x)S2 Solid Solutions,” Dalton Transactions 44, no. 24 (2015): 10991-10996.

[60]

C. Xue, H. Li, H. An, B. Yang, J. Wei, and G. Yang, “NiSx Quantum Dots Accelerate Electron Transfer in Cd0.8Zn0.2S Photocatalytic System via an rGO Nanosheet “Bridge” Toward Visible-Light-Driven Hydrogen Evolution,” ACS Catalysis 8, no. 2 (2018): 1532-1545.

[61]

E. M. Thomas, S. Ghimire, R. Kohara, et al., “Blinking Suppression in Highly Excited CdSe/ZnS Quantum Dots by Electron Transfer Under Large Positive Gibbs (Free) Energy Change,” ACS Nano 12, no. 9 (2018): 9060-9069.

[62]

M. Ma, J. Liu, H. Zhao, et al., “Broadened Photocatalytic Capability to Near-Infrared for CdS Hybrids and Positioning Hydrogen Evolution Sites,” Applied Catalysis, B: Environmental 325 (2023): 122327.

[63]

R. J. Cernik, J. R. Helliwell, and M. Helliwell, “The Uses of Softer X-Rays in Structural Studies,” Journal of Synchrotron Radiation 12, no. 4 (2005): 391.

[64]

G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Physical Review. B, Condensed Matter 47, no. 1 (1993): 558-561.

[65]

G. Kresse and J. Hafner, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium,” Physical Review. B, Condensed Matter 49, no. 20 (1994): 14251-14269.

[66]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters 77, no. 18 (1996): 3865-3868.

[67]

G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Physical Review B 59, no. 3 (1999): 1758-1775.

[68]

P. E. Blöchl, “Projector Augmented-Wave Method,” Physical Review B 50, no. 24 (1994): 17953-17979.

[69]

J. K. Nørskov, J. Rossmeisl, A. Logadottir, et al., “Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode,” Journal of Physical Chemistry B 108, no. 46 (2004): 17886-17892.

[70]

L. I. Bendavid and E. A. Carter, “CO2 Adsorption on Cu2O(111): A DFT+U and DFT-D Study,” Journal of Physical Chemistry C 117, no. 49 (2013): 26048-26059.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/