Perovskite Quantum Dots: Fabrication, Degradation, and Enhanced Performance Across Solar Cells, Optoelectronics, and Quantum Technologies

Sikandar Aftab , Zeeshan Ali , M. Imtiaz Hussain , Mohammed A. Assiri , Najaf Rubab , Faruk Ozel , Erdi Akman

Carbon Energy ›› 2025, Vol. 7 ›› Issue (9) : e70018

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (9) : e70018 DOI: 10.1002/cey2.70018
REVIEW

Perovskite Quantum Dots: Fabrication, Degradation, and Enhanced Performance Across Solar Cells, Optoelectronics, and Quantum Technologies

Author information +
History +
PDF

Abstract

Metal halide perovskites exhibit excellent absorption properties, high carrier mobility, and remarkable charge transfer ability, showcasing significant potential as light harvesters in new-generation photovoltaic and optoelectronic technologies. Their development has seen unprecedented growth since their discovery. Similar to metal halide perovskite developments, perovskite quantum dots (PQDs) have demonstrated significant versatility in terms of shape, dimension, bandgap, and optical properties, making them suitable for the development of optoelectronic devices. This review discusses various fabrication methods of PQDs, delves into their degradation mechanisms, and explores strategies for enhancing their performance with their applications in a variety of technological fields. Their elevated surface-to-volume ratio highlights their importance in increasing solar cell efficiency. PQDs are also essential for increasing the performance of perovskite solar cells, photodetectors, and light-emitting diodes, which makes them indispensable for solid-state lighting applications. PQDs' unique optoelectronic characteristics make them suitable for sophisticated sensing applications, giving them greater capabilities in this field. Furthermore, PQDs' resistive switching behavior makes them a good fit for applications in memory devices. PQDs' vast potential also encompasses the fields of quantum optics and communication, especially for uses like nanolasers and polarized light detectors. Even though stability and environmental concerns remain major obstacles, research efforts are being made to actively address these issues, enabling PQDs to obtain their full potential in device applications. Simply put, understanding PQDs' real potential lies in overcoming obstacles and utilizing their inherent qualities.

Keywords

LEDs / memory devices / perovskite quantum dots / photodetectors / polarized detectors / solar cells

Cite this article

Download citation ▾
Sikandar Aftab, Zeeshan Ali, M. Imtiaz Hussain, Mohammed A. Assiri, Najaf Rubab, Faruk Ozel, Erdi Akman. Perovskite Quantum Dots: Fabrication, Degradation, and Enhanced Performance Across Solar Cells, Optoelectronics, and Quantum Technologies. Carbon Energy, 2025, 7(9): e70018 DOI:10.1002/cey2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Tang, H. Liu, D. Zhitomirsky, et al., “Quantum Junction Solar Cells,” Nano Letters 12, no. 9 (2012): 4889-4894.

[2]

N. H. Hemasiri, M. Ashraf, S. Kazim, et al., “Interface Tweaking of Perovskite Solar Cells With Carbon Nitride-Based 2D Materials,” Nano Energy 109 (2023): 108326.

[3]

S. Aftab, A. Abbas, M. Z. Iqbal, et al., “Two-Dimensional MXene Incorporating for Electron and Hole Transport in High-Performance Perovskite Solar Cells,” Materials Today Energy 36 (2023): 101366.

[4]

L. Yang, J. Feng, Z. Liu, et al., “Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation,” Advanced Materials 34, no. 24 (2022): 2201681.

[5]

X. Li, S. Aftab, M. Mukhtar, et al., “Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions,” Nano-Micro Letters 17, no. 1 (2025): 28.

[6]

S. Aftab, H. Liu, M. Mukhtar, et al., “Enhanced Photovoltaic Performance and X-Ray Sensing Capabilities of MoSe2 Nanosheet-Based Bulk Heterojunction Polymer Solar Cells: A Comparative Study of Power Conversion Efficiency and Sensitivity,” ACS Applied Electronic Materials 7, no. 1 (2024): 590-600.

[7]

S. Aftab, F. Kabir, M. Mukhtar, et al., “Perovskite Quantum Wires: A Review of Their Exceptional Optoelectronic Properties and Diverse Applications in Revolutionary Technologies,” Nano Energy 129 (2024): 109995.

[8]

T. Zhu, L. Shen, S. Xun, et al., “High-Performance Ternary Perovskite-Organic Solar Cells,” Advanced Materials 34, no. 13 (2022): 2109348.

[9]

W. Yang, S.-H. Jo, Y. Tang, et al., “Overcoming Charge Confinement in Perovskite Nanocrystal Solar Cells,” Advanced Materials 35, no. 39 (2023): 2304533.

[10]

S. Aftab, M. Z. Iqbal, S. Hussain, F. Kabir, A. A. Al-Kahtani, and H. H. Hegazy, “Quantum Junction Solar Cells: Development and Prospects,” Advanced Functional Materials 33 (2023): 2303449.

[11]

S. Aftab, M. Z. Iqbal, S. Hussain, H. H. Hegazy, and M. A. Saeed, “Transition Metal Dichalcogenides Solar Cells and Integration With Perovskites: A Review,” Nano Energy 33, no. 38 (2023): 2303449.

[12]

C. C. Zhang, Z. K. Wang, S. Yuan, et al., “Polarized Ferroelectric Polymers for High-Performance Perovskite Solar Cells,” Advanced Materials 31, no. 30 (2019): 1902222.

[13]

Y. Lin, B. Chen, F. Zhao, et al., “Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells,” Advanced Materials 29, no. 26 (2017): 1700607.

[14]

X. Li, S. Aftab, A. Abbas, et al., “Advances in Mixed 2D and 3D Perovskite Heterostructure Solar Cells: A Comprehensive Review,” Nano Energy 118 (2023): 108979.

[15]

X. Li, S. Aftab, H. Liu, et al., “Enhancing Perovskite Solar Cells and X-Ray Photodetectors With Hybrid MoSe2@CNT Composites: A Path to Improved Efficiency and Sensitivity,” Journal of Power Sources 624 (2024): 235588.

[16]

T. D. Siegler, A. Dawson, P. Lobaccaro, et al., “The Path to Perovskite Commercialization: A Perspective From the United States Solar Energy Technologies Office,” ACS Energy Letters 7, no. 5 (2022): 1728-1734.

[17]

S. W. Lee, S. Bae, D. Kim, and H. S. Lee, “Historical Analysis of High-Efficiency, Large-Area Solar Cells: Toward Upscaling of Perovskite Solar Cells,” Advanced Materials 32, no. 51 (2020): 2002202.

[18]

S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan, and J. Zhu, “Tin and Mixed Lead-Tin Halide Perovskite Solar Cells: Progress and Their Application in Tandem Solar Cells,” Advanced Materials 32, no. 27 (2020): 1907392.

[19]

X.-L. Wang, Y. Chen, Y. Chu, et al., “Spectrum Reconstruction With Filter-Free Photodetectors Based on Graded-Band-Gap Perovskite Quantum Dot Heterojunctions,” ACS Applied Materials & Interfaces 14, no. 12 (2022): 14455-14465.

[20]

K. Chen, X. Zhang, P. A. Chen, et al., “Solution-Processed CsPbBr3 Quantum Dots/Organic Semiconductor Planar Heterojunctions for High-Performance Photodetectors,” Advanced Science 9, no. 12 (2022): 2105856.

[21]

M. Jeong, S. G. Han, W. Sung, et al., “Photomultiplication-Type Organic Photodetectors With High EQE-Bandwidth Product by Introducing a Perovskite Quantum Dot Interlayer,” Advanced Functional Materials 33, no. 27 (2023): 2300695.

[22]

M. Kim, G. Bae, K. N. Kim, et al., “Perovskite Quantum Dot-Induced Monochromatization for Broadband Photodetection of Wafer-Scale Molybdenum Disulfide,” npg Asia Materials 14, no. 1 (2022): 89.

[23]

J. Qiao, F. Feng, S. Song, et al., “Perovskite Quantum Dot-Ta2NiSe5 Mixed-Dimensional Van Der Waals Heterostructures for High-Performance Near-Infrared Photodetection,” Advanced Functional Materials 32, no. 13 (2022): 2110706.

[24]

Y. Wang, S. Bai, H. Liang, et al., “Cesium Tin Halide Perovskite Quantum Dots for High-Performance Ultraviolet Photodetectors,” Journal of Luminescence 257 (2023): 119700.

[25]

H. Li, Z. Li, S. Liu, et al., “High Performance Hybrid MXene Nanosheet/CsPbBr3 Quantum Dot Photodetectors With an Excellent Stability,” Journal of Alloys and Compounds 895 (2022): 162570.

[26]

K. Li, Y. Zhu, X. Chang, et al., “Self-Induced Bi-Interfacial Modification via Fluoropyridinic Acid for High-Performance Inverted Perovskite Solar Cells,” Advanced Energy Materials 15 (2025): 2404335.

[27]

X. Lin, L. Sheng, J. Yang, et al., “Flexible Films With Three-Dimensional Ion Transport Channels: Carbon Nanotubes@MnO2 as Interlayer Spacers in Porous Graphene Electrodes for High-Performance Supercapacitors,” Journal of Alloys and Compounds 990 (2024): 174455.

[28]

L. Liu, A. Najar, K. Wang, M. Du, and S. Liu, “Perovskite Quantum Dots in Solar Cells,” Advanced Science 9, no. 7 (2022): 2104577.

[29]

S. Aftab, S. Hussain, F. Kabir, M. Aslam, A. H. Rajpar, and A. G. Al-Sehemi, “Advances in Flexible Perovskite Solar Cells: A Comprehensive Review,” Nano Energy 120 (2024): 109112.

[30]

L. He, H. Su, Z. Li, H. Liu, and W. Shen, “Multiple Function Synchronous Optimization by PbS Quantum Dots for Highly Stable Planar Perovskite Solar Cells With Efficiency Exceeding 23%,” Advanced Functional Materials 33, no. 17 (2023): 2213963.

[31]

K. Chen, W. Jin, Y. Zhang, et al., “High Efficiency Mesoscopic Solar Cells Using CsPbI3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering,” Journal of the American Chemical Society 142, no. 8 (2020): 3775-3783.

[32]

Y. Wang, C. Duan, X. Zhang, et al., “Electroluminescent Solar Cells Based on CsPbI3 Perovskite Quantum Dots,” Advanced Functional Materials 32, no. 6 (2022): 2108615.

[33]

D. Jia, J. Chen, J. Qiu, et al., “Tailoring Solvent-Mediated Ligand Exchange for CsPbI3 Perovskite Quantum Dot Solar Cells With Efficiency Exceeding 16.5%,” Joule 6, no. 7 (2022): 1632-1653.

[34]

H. S. Yang, E. H. Suh, S. H. Noh, et al., “Facile Low-Energy and High-Yield Synthesis of Stable α-CsPbI3 Perovskite Quantum Dots: Decomposition Mechanisms and Solar Cell Applications,” Chemical Engineering Journal 454 (2023): 140331.

[35]

H. Huang, X. Zhang, R. Gui, et al., “High-Efficiency Perovskite Quantum Dot Photovoltaic With Homogeneous Structure and Energy Landscape,” Advanced Functional Materials 33, no. 13 (2023): 2210728.

[36]

X. Zhang, H. Huang, X. Ling, et al., “Homojunction Perovskite Quantum Dot Solar Cells With Over 1 µm-Thick Photoactive Layer,” Advanced Materials 34, no. 2 (2022): 2105977.

[37]

D. Jia, J. Chen, R. Zhuang, Y. Hua, and X. Zhang, “Inhibiting Lattice Distortion of CsPbI3 Perovskite Quantum Dots for Solar Cells With Efficiency Over 16.6%,” Energy & Environmental Science 15, no. 10 (2022): 4201-4212.

[38]

A. Liu, C. Bi, and J. Tian, “All Solution-Processed High Performance Pure-Blue Perovskite Quantum-Dot Light-Emitting Diodes,” Advanced Functional Materials 32, no. 44 (2022): 2207069.

[39]

M. Xie, J. Guo, X. Zhang, et al., “High-Efficiency Pure-Red Perovskite Quantum-Dot Light-Emitting Diodes,” Nano Letters 22, no. 20 (2022): 8266-8273.

[40]

C. Wei, W. Su, J. Li, et al., “A Universal Ternary-Solvent-Ink Strategy Toward Efficient Inkjet-Printed Perovskite Quantum Dot Light-Emitting Diodes,” Advanced Materials 34, no. 10 (2022): 2107798.

[41]

Z. L. Tseng, L. C. Chen, L. W. Chao, et al., “Aggregation Control, Surface Passivation, and Optimization of Device Structure Toward Near-Infrared Perovskite Quantum-Dot Light-Emitting Diodes With an EQE up to 15.4%,” Advanced Materials 34, no. 18 (2022): 2109785.

[42]

C. Bi, Z. Yao, J. Hu, et al., “Suppressing Auger Recombination of Perovskite Quantum Dots for Efficient Pure-Blue-Light-Emitting Diodes,” ACS Energy Letters 8, no. 1 (2022): 731-739.

[43]

J. Kim, K. W. Seo, S. Lee, K. Kim, C. Kim, and J. Y. Lee, “All-in-One Process for Color Tuning and Patterning of Perovskite Quantum Dot Light-Emitting Diodes,” Advanced Science 9, no. 13 (2022): 2200073.

[44]

H. Shan, W. Xuan, Z. Li, D. Hu, X. Gu, and S. Huang, “Room-Temperature Hydrogen Sulfide Sensor Based on Tributyltin Oxide Functionalized Perovskite CsPbBr3 Quantum Dots,” ACS Applied Nano Materials 5, no. 5 (2022): 6801-6809.

[45]

C.-L. Hu, H.-J. Pan, R.-N. Ma, et al., “Gold Nanoparticle-Attached Perovskite Cs3Bi2Br9 QDs/BiOBr Heterostructures for Photoelectrochemical Biosensing,” ACS Applied Nano Materials 5, no. 2 (2022): 2812-2819.

[46]

L.-C. Chen, M.-C. Li, K.-R. Chen, et al., “Facile and Unplugged Surface Plasmon Resonance Biosensor With NIR-Emitting Perovskite Nanocomposites for Fast Detection of SARS-CoV-2,” Analytical Chemistry 95, no. 18 (2023): 7186-7194.

[47]

J. Pei, X. Wu, W.-J. Liu, D. W. Zhang, and S.-J. Ding, “Photoelectric Logic and In Situ Memory Transistors With Stepped Floating Gates of Perovskite Quantum Dots,” ACS Nano 16, no. 2 (2022): 2442-2451.

[48]

Y.-C. Chiang, W.-C. Yang, C.-C. Hung, et al., “Fully Photoswitchable Phototransistor Memory Comprising Perovskite Quantum Dot-Based Hybrid Nanocomposites as a Photoresponsive Floating Gate,” ACS Applied Materials & Interfaces 15, no. 1 (2023): 1675-1684.

[49]

X. Cao, Z. Ma, T. Cheng, et al., “Air-Stable, Eco-Friendly RRAMs Based on Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots for High-Performance Information Storage,” Energy & Environmental Materials 6, no. 5 (2023): e12419.

[50]

B. Ku, B. Koo, W. Kim, et al., “Room-Temperature Stable CsPbI3 Perovskite Quantum Dots Prepared by Layer-by-Layer Assembly for Photonic Synapse,” Journal of Alloys and Compounds 960 (2023): 170459.

[51]

Q. Chen, X. Huang, D. Yang, et al., “Three-Dimensional Laser Writing Aligned Perovskite Quantum Dots in Glass for Polarization-Sensitive Anti-Counterfeiting,” Advanced Optical Materials 11, no. 10 (2023): 2300090.

[52]

F. Liu, Y. Zhang, C. Ding, et al., “Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield,” ACS Nano 11, no. 10 (2017): 10373-10383.

[53]

J. Bo, X. Sun, P. Wan, et al., “Perovskite Quantum Dots With Ultrahigh Solid-State Photoluminescence Quantum Efficiency, Superior Stability, and Uncompromised Electrical Conductivity,” Journal of Physical Chemistry Letters 12, no. 37 (2021): 9115-9123.

[54]

C.-H. Sung, S.-D. Huang, G. Kumar, et al., “Highly Luminescent Perovskite Quantum Dots for Light-Emitting Devices: Photopatternable Perovskite Quantum Dot-Polymer Nanocomposites,” Journal of Materials Chemistry C 10, no. 42 (2022): 15941-15947.

[55]

L. Hu, Q. Zhao, S. Huang, et al., “Flexible and Efficient Perovskite Quantum Dot Solar Cells via Hybrid Interfacial Architecture,” Nature Communications 12, no. 1 (2021): 466.

[56]

C. Gao, J. Zhu, S. Ye, M. Li, H. Wang, and J. He, “Novel High-Entropy Perovskite Titanate: A Potential Thermal Protective Material With Improved Thermophysical Properties,” Journal of the European Ceramic Society 45, no. 2 (2025): 116878.

[57]

M. Chen, F. Yin, Z. Du, et al., “MOF-Derived CuxS Double-Faced-Decorated Carbon Nanosheets as High-Performance and Stable Counter Electrodes for Quantum Dots Solar Cells,” Journal of Colloid and Interface Science 628 (2022): 22-30.

[58]

N. S. Peighambardoust, E. Sadeghi, and U. Aydemir, “Lead Halide Perovskite Quantum Dots for Photovoltaics and Photocatalysis: A Review,” ACS Applied Nano Materials 5, no. 10 (2022): 14092-14132.

[59]

M. M. Tavakoli, M. Nasilowski, J. Zhao, M. G. Bawendi, and J. Kong, “Efficient Semitransparent CsPbI3 Quantum Dots Photovoltaics Using a Graphene Electrode,” Small Methods 3, no. 12 (2019): 1900449.

[60]

Q. Zhao, A. Hazarika, X. Chen, et al., “High Efficiency Perovskite Quantum Dot Solar Cells With Charge Separating Heterostructure,” Nature Communications 10, no. 1 (2019): 2842.

[61]

S. Kangwen, L. Siyu, G. Yixiang, D. Huafei, D. Cheng, and W. Zhiyao, “Output Power Prediction of Stratospheric Airship Solar Array Based on Surrogate Model under Global Wind Field,” Chinese Journal of Aeronautics 38 (2024): 103244.

[62]

L. Wan, D. Raveh, T. Yu, D. Zhao, and O. Korotkova, “Optical Resonance With Subwavelength Spectral Coherence Switch in Open-End Cavity,” Science China: Physics, Mechanics & Astronomy 66, no. 7 (2023): 274213.

[63]

K. Zhou, M. Zhao, X. Meng, et al., “Preparation of Wide Bandgap CuGaSe2 Absorbers and Solar Cells by Sputtering a Selenium-Rich Ceramic Target and Annealing in a Selenium-Free Atmosphere,” Ceramics International 50, no. 15 (2024): 27120-27126.

[64]

J. Zhang, L. Wang, A. Zhong, et al., “Deep Red PhOLED From Dimeric Salophen Platinum(II) Complexes,” Dyes and Pigments 162 (2019): 590-598.

[65]

Y. Chen, B. Liu, Q. Zhou, et al., “Critical Role of 1D Materials in Realizing Efficient and Stable Perovskite Solar Cells,” Journal of Materials Chemistry A 11, no. 35 (2023): 18592-18604.

[66]

Z. Ding, S. Li, Y. Jiang, D. Wang, and M. Yuan, “Open-Circuit Voltage Loss in Perovskite Quantum Dot Solar Cells,” Nanoscale 15, no. 8 (2023): 3713-3729.

[67]

Q. Zhao, S. Wang, Y.-H. Kim, et al., “Advantageous Properties of Halide Perovskite Quantum Dots Towards Energy-Efficient Sustainable Applications,” Green Energy & Environment 9 (2023): 949-965.

[68]

W. Chi and S. K. Banerjee, “Development of Perovskite Solar Cells by Incorporating Quantum Dots,” Chemical Engineering Journal 426 (2021): 131588.

[69]

N. Zhou, D. Wang, Y. Bao, R. Zhu, P. Yang, and L. Song, “A Review of Perovskite Nanocrystal Applications in Luminescent Solar Concentrators,” Advanced Optical Materials 11, no. 14 (2023): 2202681.

[70]

S. L. Choon, H. N. Lim, I. Ibrahim, et al., “New Potential Materials in Advancement of Photovoltaic and Optoelectronic Applications: Metal Halide Perovskite Nanorods,” Renewable and Sustainable Energy Reviews 171 (2023): 113037.

[71]

A. Younis, L. Hu, P. Sharma, et al., “Enhancing Resistive Switching Performance and Ambient Stability of Hybrid Perovskite Single Crystals via Embedding Colloidal Quantum Dots,” Advanced Functional Materials 30, no. 31 (2020): 2002948.

[72]

L. C. Schmidt, A. Pertegás, S. González-Carrero, et al., “Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles,” Journal of the American Chemical Society 136, no. 3 (2014): 850-853.

[73]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, et al., “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission With Wide Color Gamut,” Nano Letters 15, no. 6 (2015): 3692-3696.

[74]

Z. Long, S. Yang, J. Pi, et al., “All-Inorganic Halide Perovskite (CsPbX3, X = Cl, Br, I) Quantum Dots Synthesized via Fast Anion Hot Injection by Using Trimethylhalosilanes,” Ceramics International 48, no. 23 (2022): 35474-35479.

[75]

F. Zhang, H. Zhong, C. Chen, et al., “Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology,” ACS Nano 9, no. 4 (2015): 4533-4542.

[76]

M. Guarino-Hotz, J. L. Barnett, L. B. Pham, A. A. Win, V. L. Cherrette, and J. Z. Zhang, “Tuning Between Methylammonium Lead Bromide Perovskite Magic-Sized Clusters and Quantum Dots Through Ligand Assisted Reprecipitation at Elevated Temperatures,” Journal of Physical Chemistry C 126, no. 32 (2022): 13854-13862.

[77]

S. Aftab, X. Li, F. Kabir, et al., “Lighting the Future: Perovskite Nanorods and Their Advances Across Applications,” Nano Energy 124 (2024): 109504.

[78]

S. Aftab, G. Koyyada, Z. Haider, et al., “From Lab to Luminescence: Perovskite-Based Dimensional Integrations Pushing LED Boundaries,” Materials Today Physics 46 (2024): 101490.

[79]

C. Bi, S. Wang, W. Wen, J. Yuan, G. Cao, and J. Tian, “Room-Temperature Construction of Mixed-Halide Perovskite Quantum Dots With High Photoluminescence Quantum Yield,” Journal of Physical Chemistry C 122, no. 9 (2018): 5151-5160.

[80]

J. Deng, H. Wang, J. Xun, et al., “Room-Temperature Synthesis of Excellent-Performance CsPb1−xSnxBr3 Perovskite Quantum Dots and Application in Light Emitting Diodes,” Materials & Design 185 (2020): 108246.

[81]

H. C. Wang, W. Wang, A. C. Tang, et al., “High-Performance CsPb1−xSnxBr3 Perovskite Quantum Dots for Light-Emitting Diodes,” Angewandte Chemie 129, no. 44 (2017): 13838-13842.

[82]

P. Conceição, A. Perdomo, D. F. Carvalho, J. P. Teixeira, P. M. P. Salomé, and T. Trindade, “Sonochemical-Assisted Synthesis of CsPbBr3 Perovskite Quantum Dots Using Vegetable Oils,” Green Chemistry 26, no. 13 (2024): 7837-7848.

[83]

X. Xu, H. He, Z. Fang, et al., “Ultrasonication-Assisted Ambient-Air Synthesis of Monodispersed Blue-Emitting CsPbBr3 Quantum Dots for White Light Emission,” ACS Applied Nano Materials 2, no. 11 (2019): 6874-6879.

[84]

Y. Wang, T. Chen, C. Huang, Y. Wang, J. Wu, and B. Sun, “Electrochemically Switchable Electrochemiluminescent Sensor Constructed Based on Inorganic Perovskite Quantum Dots Synthesized With Microwave Irradiation,” Journal of Electroanalytical Chemistry 867 (2020): 114181.

[85]

N. Mireles Villegas, J. C. Hernandez, J. C. John, and M. Sheldon, “Promoting Solution-Phase Superlattices of CsPbBr3 Nanocrystals,” Nanoscale 15, no. 22 (2023): 9728-9737.

[86]

H. Liu, X. Xiao, Y. Wu, et al., “Pure-Red Electroluminescence of Quantum-Confined CsPbI3 Perovskite Nanocrystals Obtained by the Gradient Purification Method,” Materials Today Energy 41 (2024): 101533.

[87]

J. De Roo, M. Ibáñez, P. Geiregat, et al., “Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals,” ACS Nano 10, no. 2 (2016): 2071-2081.

[88]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3),” Advanced Materials 27, no. 44 (2015): 7162-7167.

[89]

E. Jang, Y. Kim, Y.-H. Won, H. Jang, and S.-M. Choi, “Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays,” ACS Energy Letters 5, no. 4 (2020): 1316-1327.

[90]

J. Pan, S. P. Sarmah, B. Murali, et al., “Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission,” Journal of Physical Chemistry Letters 6, no. 24 (2015): 5027-5033.

[91]

J. Li, L. Xu, T. Wang, et al., “50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control,” Advanced Materials 29, no. 5 (2017): 1603885.

[92]

T. Chiba, K. Hoshi, Y.-J. Pu, et al., “High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment,” ACS Applied Materials & Interfaces 9, no. 21 (2017): 18054-18060.

[93]

H. S. Yang, S. H. Noh, E. H. Suh, et al., “Enhanced Stabilities and Production Yields of MAPbBr3 Quantum Dots and Their Applications as Stretchable and Self-Healable Color Filters,” ACS Applied Materials & Interfaces 13, no. 3 (2021): 4374-4384.

[94]

K. Hoshi, T. Chiba, J. Sato, et al., “Purification of Perovskite Quantum Dots Using Low-Dielectric-Constant Washing Solvent ʻDiglymeʼ for Highly Efficient Light-Emitting Devices,” ACS Applied Materials & Interfaces 10, no. 29 (2018): 24607-24612.

[95]

E. Akman, T. Ozturk, W. Xiang, et al., “The Effect of B-Site Doping in All-Inorganic CsPbIxBr3−x Absorbers on the Performance and Stability of Perovskite Photovoltaics,” Energy & Environmental Science 16, no. 2 (2023): 372-403.

[96]

A. A. A. Pirzado, C. Wang, X. Zhang, et al., “Room-Temperature Growth of Perovskite Single Crystals via Antisolvent-Assisted Confinement for High-Performance Electroluminescent Devices,” Nano Energy 118 (2023): 108951.

[97]

X. Li, S. Aftab, H. Liu, et al., “Enhancing Electron Transport Through Metal Oxide Adjustments in Perovskite Solar Cells and Their Suitability for X-Ray Detection,” Journal of Materials Chemistry A 12, no. 33 (2024): 22310-22324.

[98]

R. An, F. Zhang, X. Zou, et al., “Photostability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots,” ACS Applied Materials & Interfaces 10, no. 45 (2018): 39222-39227.

[99]

G. Yuan, C. Ritchie, M. Ritter, S. Murphy, D. E. Gómez, and P. Mulvaney, “The Degradation and Blinking of Single CsPbI3 Perovskite Quantum Dots,” Journal of Physical Chemistry C 122, no. 25 (2017): 13407-13415.

[100]

S. Lim, J. Kim, J. Y. Park, et al., “Suppressed Degradation and Enhanced Performance of CsPbI3 Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers,” ACS Applied Materials & Interfaces 13, no. 5 (2021): 6119-6129.

[101]

H. Wang, X. Zhang, N. Sui, et al., “Emission Quenching and Recovery of Illuminated Perovskite Quantum Dots Due to Iodide Ion Migration,” Journal of Physical Chemistry Letters 11, no. 15 (2020): 6168-6175.

[102]

H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang, and R. S. Liu, “Perovskite Quantum Dots and Their Application in Light-Emitting Diodes,” Small 14, no. 1 (2018): 1702433.

[103]

H. Wu, S. Lin, R. Wang, X. You, and Y. Chi, “Water-Stable and Ion Exchange-Free Inorganic Perovskite Quantum Dots Encapsulated in Solid Paraffin and Their Application in Light Emitting Diodes,” Nanoscale 11, no. 12 (2019): 5557-5563.

[104]

C. J. Thomas, Y. Zhang, A. Guillaussier, et al., “Thermal Stability of the Black Perovskite Phase in Cesium Lead Iodide Nanocrystals Under Humid Conditions,” Chemistry of Materials 31, no. 23 (2019): 9750-9758.

[105]

X. Ren, X. Zhang, H. Xie, et al., “Perovskite Quantum Dots for Emerging Displays: Recent Progress and Perspectives,” Nanomaterials 12, no. 13 (2022): 2243.

[106]

D. Yan, T. Shi, Z. Zang, et al., “Ultrastable CsPbBr3 Perovskite Quantum Dot and Their Enhanced Amplified Spontaneous Emission by Surface Ligand Modification,” Small 15, no. 23 (2019): 1901173.

[107]

Y. Wang, J. Yuan, X. Zhang, et al., “Surface Ligand Management Aided by a Secondary Amine Enables Increased Synthesis Yield of CsPbI3 Perovskite Quantum Dots and High Photovoltaic Performance,” Advanced Materials 32, no. 32 (2020): 2000449.

[108]

C. Bi, S. V. Kershaw, A. L. Rogach, and J. Tian, “Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange With Aminoethanethiol,” Advanced Functional Materials 29, no. 29 (2019): 1902446.

[109]

M. Kazes, T. Udayabhaskararao, S. Dey, and D. Oron, “Effect of Surface Ligands in Perovskite Nanocrystals: Extending in and Reaching Out,” Accounts of Chemical Research 54, no. 6 (2021): 1409-1418.

[110]

Y. Bai, M. Hao, S. Ding, P. Chen, and L. Wang, “Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives,” Advanced Materials 34, no. 4 (2022): 2105958.

[111]

B. A. Koscher, J. K. Swabeck, N. D. Bronstein, and A. P. Alivisatos, “Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment,” Journal of the American Chemical Society 139, no. 19 (2017): 6566-6569.

[112]

D. Yang, X. Li, W. Zhou, et al., “CsPbBr3 Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification,” Advanced Materials 31, no. 30 (2019): 1900767.

[113]

H. Zhao, H. Chen, S. Bai, et al., “High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr3 Nanocrystals With Rationally Designed Aromatic Ligands,” ACS Energy Letters 6, no. 7 (2021): 2395-2403.

[114]

L. M. Wheeler, E. M. Sanehira, A. R. Marshall, et al., “Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics,” Journal of the American Chemical Society 140, no. 33 (2018): 10504-10513.

[115]

S. H. Noh, W. Jeong, K. H. Lee, et al., “Photocrosslinkable Zwitterionic Ligands for Perovskite Nanocrystals: Self-Assembly and High-Resolution Direct Patterning,” Advanced Functional Materials 33, no. 41 (2023): 2304004.

[116]

H. Song, J. Yang, W. H. Jeong, et al., “A Universal Perovskite Nanocrystal Ink for High-Performance Optoelectronic Devices,” Advanced Materials 35, no. 8 (2023): 2209486.

[117]

S. Wang, L. Du, Z. Jin, Y. Xin, and H. Mattoussi, “Enhanced Stabilization and Easy Phase Transfer of CsPbBr3 Perovskite Quantum Dots Promoted by High-Affinity Polyzwitterionic Ligands,” Journal of the American Chemical Society 142, no. 29 (2020): 12669-12680.

[118]

L. Xu, S. Yuan, H. Zeng, and J. Song, “A Comprehensive Review of Doping in Perovskite Nanocrystals/Quantum Dots: Evolution of Structure, Electronics, Optics, and Light-Emitting Diodes,” Materials Today Nano 6 (2019): 100036.

[119]

Y. Wu, R. Jia, J. Xu, et al., “Strategies of Improving CsPbX3 Perovskite Quantum Dots Optical Performance,” Frontiers in Materials 9 (2022): 845977.

[120]

J. Jiang, F. Liu, Q. Shen, and S. Tao, “The Role of Sodium in Stabilizing Tin-Lead (Sn-Pb) Alloyed Perovskite Quantum Dots,” Journal of Materials Chemistry A 9, no. 20 (2021): 12087-12098.

[121]

S. Baek, S. Kim, J. Y. Noh, et al., “Development of Mixed-Cation CsxRb1-xBr3 Perovskite Quantum Dots and Their Full-Color Film With High Stability and Wide Color Gamut,” Advanced Optical Materials 6, no. 15 (2018): 1800295.

[122]

C. Luo, W. Li, J. Fu, and W. Yang, “Constructing Gradient Energy Levels to Promote Exciton Energy Transfer for Photoluminescence Controllability of All-Inorganic Perovskites and Application in Single-Component WLEDs,” Chemistry of Materials 31, no. 15 (2019): 5616-5624.

[123]

C. Bi, S. Wang, Q. Li, S. V. Kershaw, J. Tian, and A. L. Rogach, “Thermally Stable Copper(II)-Doped Cesium Lead Halide Perovskite Quantum Dots With Strong Blue Emission,” Journal of Physical Chemistry Letters 10, no. 5 (2019): 943-952.

[124]

A. F. Gualdrón-Reyes, D. F. Macias-Pinilla, S. Masi, et al., “Engineering Sr-Doping for Enabling Long-Term Stable FAPb1−xSrxI3 Quantum Dots With 100% Photoluminescence Quantum Yield,” Journal of Materials Chemistry C 9, no. 5 (2021): 1555-1566.

[125]

J. Liang, D. Chen, X. Yao, et al., “Recent Progress and Development in Inorganic Halide Perovskite Quantum Dots for Photoelectrochemical Applications,” Small 16, no. 15 (2020): 1903398.

[126]

S. Ma, G. Yuan, Y. Zhang, N. Yang, Y. Li, and Q. Chen, “Development of Encapsulation Strategies Towards the Commercialization of Perovskite Solar Cells,” Energy & Environmental Science 15, no. 1 (2022): 13-55.

[127]

Z. J. Li, E. Hofman, J. Li, et al., “Photoelectrochemically Active and Environmentally Stable CsPbBr3/TiO2 Core/Shell Nanocrystals,” Advanced Functional Materials 28, no. 1 (2018): 1704288.

[128]

A. Pan, J. Wang, M. J. Jurow, et al., “General Strategy for the Preparation of Stable Luminous Nanocomposite Inks Using Chemically Addressable CsPbX3 Peroskite Nanocrystals,” Chemistry of Materials 30, no. 8 (2018): 2771-2780.

[129]

H. Hu, L. Wu, Y. Tan, et al., “Interfacial Synthesis of Highly Stable CsPbX3/Oxide Janus Nanoparticles,” Journal of the American Chemical Society 140, no. 1 (2018): 406-412.

[130]

Y. Wei, Z. Cheng, and J. Lin, “An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted LEDs,” Chemical Society Reviews 48, no. 1 (2019): 310-350.

[131]

Z. Wang, R. Fu, F. Li, et al., “One-Step Polymeric Melt Encapsulation Method to Prepare CsPbBr3 Perovskite Quantum Dots/Polymethyl Methacrylate Composite With High Performance,” Advanced Functional Materials 31, no. 22 (2021): 2010009.

[132]

S. N. Raja, Y. Bekenstein, M. A. Koc, et al., “Encapsulation of Perovskite Nanocrystals Into Macroscale Polymer Matrices: Enhanced Stability and Polarization,” ACS Applied Materials & Interfaces 8, no. 51 (2016): 35523-35533.

[133]

X. Li, Y. Wang, H. Sun, and H. Zeng, “Amino-Mediated Anchoring Perovskite Quantum Dots for Stable and Low-Threshold Random Lasing,” Advanced Materials 29, no. 36 (2017): 1701185.

[134]

J. Wang, M. Li, W. Shen, W. Su, and R. He, “Ultrastable Carbon Quantum Dots-Doped MAPbBr3Perovskite With Silica Encapsulation,” ACS Applied Materials & Interfaces 11, no. 37 (2019): 34348-34354.

[135]

Z. Zhang, L. Liu, H. Huang, et al., “Encapsulation of CsPbBr3 Perovskite Quantum Dots Into PPy Conducting Polymer: Exceptional Water Stability and Enhanced Charge Transport Property,” Applied Surface Science 526 (2020): 146735.

[136]

B. Shi, J. , Y. Liu, Y. Xiao, and C. , “Ultra-Stable Water-Dispersive Perovskite QDs Encapsulated by Triple Siloxane Coupling Agent System With Different Hydrophilic/Hydrophobic Properties,” Materials Chemistry Frontiers 5, no. 11 (2021): 4343-4354.

[137]

Y. Xie, D. Yang, L. Zhang, et al., “Highly Efficient and Thermally Stable QD-LEDs Based on Quantum Dots-SiO2-BN Nanoplate Assemblies,” ACS Applied Materials & Interfaces 12, no. 1 (2019): 1539-1548.

[138]

A. Jana, S. Cho, A. Meena, et al., “Stabilization of Halide Perovskites With Silicon Compounds for Optoelectronic, Catalytic, and Bioimaging Applications,” InfoMat 6 (2024): e12559.

[139]

W. Lv, L. Li, M. Xu, et al., “Improving the Stability of Metal Halide Perovskite Quantum Dots by Encapsulation,” Advanced Materials 31, no. 28 (2019): 1900682.

[140]

X. Tang, W. Chen, Z. Liu, et al., “Ultrathin, Core-Shell Structured SiO2 Coated Mn2+-Doped Perovskite Quantum Dots for Bright White Light-Emitting Diodes,” Small 15, no. 19 (2019): 1900484.

[141]

Z. Yin, Q. Sun, J. Leng, L. Liu, B. Wu, and S. Jin, “Luminescent Dynamics of Perovskite Quantum Dots Encapsulated in Metal-Organic Frameworks,” Journal of Physical Chemistry C 127, no. 22 (2023): 10655-10661.

[142]

S. M. Luzan and A. V. Talyzin, “Hydrogen Adsorption in Pt catalyst/MOF-5 Materials,” Microporous and Mesoporous Materials 135, no. 1-3 (2010): 201-205.

[143]

Y. Zhang, Y. Yu, G. Du, et al., “Efficient Removal of Chlortetracycline Hydrochloride by MOF-5-Derived Metal-Free Carbon Materials With Ultra-High Specific Surface Area,” Colloids and Surfaces, A: Physicochemical and Engineering Aspects 686 (2024): 133474.

[144]

J. Ren, T. Li, X. Zhou, et al., “Encapsulating All-Inorganic Perovskite Quantum Dots Into Mesoporous Metal Organic Frameworks With Significantly Enhanced Stability for Optoelectronic Applications,” Chemical Engineering Journal 358 (2019): 30-39.

[145]

D. Zhang, Y. Xu, Q. Liu, and Z. Xia, “Encapsulation of CH3NH3PbBr3 Perovskite Quantum Dots in MOF-5 Microcrystals as a Stable Platform for Temperature and Aqueous Heavy Metal Ion Detection,” Inorganic Chemistry 57, no. 8 (2018): 4613-4619.

[146]

M. K. A. Mohammed, M. I. Abualsayed, A. M. Alshehri, et al., “Synergistic Effects of Energy Level Alignment and Trap Passivation via 3, 4-Dihydroxyphenethylamine Hydrochloride for Efficient and Air-Stable Perovskite Solar Cells,” ACS Applied Energy Materials 7, no. 3 (2024): 1358-1368.

[147]

C. Yang, W. Hu, J. Liu, et al., “Achievements, Challenges, and Future Prospects for Industrialization of Perovskite Solar Cells,” Light: Science & Applications 13, no. 1 (2024): 227.

[148]

J. Qin, Z. Che, Y. Kang, et al., “Towards Operation-Stabilizing Perovskite Solar Cells: Fundamental Materials, Device Designs, and Commercial Applications,” InfoMat 6, no. 4 (2024): e12522.

[149]

X. Yao, J. Duan, Y. Zhao, et al., “Stretchable Alkenamides Terminated Ti3C2Tx MXenes to Release Strain for Lattice-Stable Mixed-Halide Perovskite Solar Cells With Suppressed Halide Segregation,” Carbon Energy 5, no. 12 (2023): e387.

[150]

Y. Zhao, L. Gao, Q. Wang, et al., “Reinforced SnO2 Tensile-Strength and “Buffer-Spring” Interfaces for Efficient Inorganic Perovskite Solar Cells,” Carbon Energy 6 (2024): e468.

[151]

F. C. Liang, E. Akman, S. Aftab, et al., “Self-Healing Polymers in Rigid and Flexible Perovskite Photovoltaics,” InfoMat 7 (2024): e12628.

[152]

S. Zhang, F. Ye, X. Wang, et al., “Minimizing Buried Interfacial Defects for Efficient Inverted Perovskite Solar Cells,” Science 380, no. 6643 (2023): 404-409.

[153]

Z. Liang, Y. Zhang, H. Xu, et al., “Homogenizing Out-of-Plane Cation Composition in Perovskite Solar Cells,” Nature 624, no. 7992 (2023): 557-563.

[154]

Y. Zheng, Y. Li, R. Zhuang, et al., “Towards 26% Efficiency in Inverted Perovskite Solar Cells via Interfacial Flipped Band Bending and Suppressed Deep-Level Traps,” Energy & Environmental Science 17, no. 3 (2024): 1153-1162.

[155]

H. Chen, C. Liu, J. Xu, et al., “Improved Charge Extraction in Inverted Perovskite Solar Cells With Dual-Site-Binding Ligands,” Science 384, no. 6692 (2024): 189-193.

[156]

S. Liu, J. Li, W. Xiao, et al., “Buried Interface Molecular Hybrid for Inverted Perovskite Solar Cells,” Nature 632, no. 8025 (2024): 536-542.

[157]

M. Zhang, Q. Gao, X. Mei, et al., “Renovating the Surface Matrix of FAPbl3 Perovskite Quantum Dots via Phase-Transfer Catalysis for 16.29% Efficiency Solar Cells,” Energy & Environmental Science 17, no. 6 (2024): 2145-2156.

[158]

Z. Tang, S. Wang, W. Zhu, L. Ding, and F. Hao, “Non-Toxic Solvent-Processed Tin-Halide Perovskite Solar Cells via Weak Coordination,” Green Chemistry 25, no. 3 (2023): 1150-1156.

[159]

S. Chandra, M. A. Mustafa, K. Ghadir, et al., “Synthesis, Characterization, and Practical Applications of Perovskite Quantum Dots: Recent Update,” Naunyn Schmiedebergs Arch 397 (2024): 1-42.

[160]

M. Chen, J. Wang, F. Yin, Z. Du, L. A. Belfiore, and J. Tang, “Strategically Integrating Quantum Dots Into Organic and Perovskite Solar Cells,” Journal of Materials Chemistry A 9, no. 8 (2021): 4505-4527.

[161]

Y. Zhou, J. Yang, X. Luo, Y. Li, Q. Qiu, and T. Xie, “Selection, Preparation and Application of Quantum Dots in Perovskite Solar Cells,” International Journal of Molecular Sciences 23, no. 16 (2022): 9482.

[162]

C. Liu, M. Hu, X. Zhou, et al., “Efficiency and Stability Enhancement of Perovskite Solar Cells by Introducing CsPbI3 Quantum Dots as an Interface Engineering Layer,” npg Asia Materials 10, no. 6 (2018): 552-561.

[163]

A. Swarnkar, A. R. Marshall, E. M. Sanehira, et al., “Quantum Dot-Induced Phase Stabilization of α-CsPbI3 Perovskite for High-Efficiency Photovoltaics,” Science 354, no. 6308 (2016): 92-95.

[164]

E. M. Sanehira, A. R. Marshall, J. A. Christians, et al., “Enhanced Mobility CsPbI3 Quantum Dot Arrays for Record-Efficiency, High-Voltage Photovoltaic Cells,” Science Advances 3, no. 10 (2017): eaao4204.

[165]

Q. Wang, Z. Jin, D. Chen, et al., “µ-Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells With Much Improved Stability,” Advanced Energy Materials 8, no. 22 (2018): 1800007.

[166]

J. Yuan, X. Ling, D. Yang, et al., “Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells,” Joule 2, no. 11 (2018): 2450-2463.

[167]

J. Xue, J.-W. Lee, Z. Dai, et al., “Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells,” Joule 2, no. 9 (2018): 1866-1878.

[168]

A. Hazarika, Q. Zhao, E. A. Gaulding, et al., “Perovskite Quantum Dot Photovoltaic Materials Beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition,” ACS Nano 12, no. 10 (2018): 10327-10337.

[169]

F. Liu, C. Ding, Y. Zhang, et al., “GeI2 Additive for High Optoelectronic Quality CsPbI3 Quantum Dots and Their Application in Photovoltaic Devices,” Chemistry of Materials 31, no. 3 (2019): 798-807.

[170]

J. Shi, F. Li, J. Yuan, et al., “Efficient and Stable CsPbI3 Perovskite Quantum Dots Enabled by In Situ Ytterbium Doping for Photovoltaic Applications,” Journal of Materials Chemistry A 7, no. 36 (2019): 20936-20944.

[171]

K. Chen, Q. Zhong, W. Chen, et al., “Short-Chain Ligand-Passivated Stable α-CsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells,” Advanced Functional Materials 29, no. 24 (2019): 1900991.

[172]

S. Bera, D. Ghosh, A. Dutta, S. Bhattacharyya, S. Chakraborty, and N. Pradhan, “Limiting Heterovalent B-Site Doping in CsPbI3 Nanocrystals: Phase and Optical Stability,” ACS Energy Letters 4, no. 6 (2019): 1364-1369.

[173]

X. Ling, S. Zhou, J. Yuan, et al., “14.1% CsPbI3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation,” Advanced Energy Materials 9, no. 28 (2019): 1900721.

[174]

J. Xue, R. Wang, L. Chen, et al., “A Small-Molecule ʻCharge Driverʻ Enables Perovskite Quantum Dot Solar Cells With Efficiency Approaching 13%,” Advanced Materials 31, no. 37 (2019): 1900111.

[175]

J. Yuan, C. Bi, S. Wang, et al., “Spray-Coated Colloidal Perovskite Quantum Dot Films for Highly Efficient Solar Cells,” Advanced Functional Materials 29, no. 49 (2019): 1906615.

[176]

J. Kim, B. Koo, W. H. Kim, et al., “Alkali Acetate-Assisted Enhanced Electronic Coupling in CsPbI3 Perovskite Quantum Dot Solids for Improved Photovoltaics,” Nano Energy 66 (2019): 104130.

[177]

F. Li, S. Zhou, J. Yuan, et al., “Perovskite Quantum Dot Solar Cells With 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI3/FAPbI3 Bilayer Structure,” ACS Energy Letters 4, no. 11 (2019): 2571-2578.

[178]

M. Hao, Y. Bai, S. Zeiske, et al., “Ligand-Assisted Cation-Exchange Engineering for High-Efficiency Colloidal Cs1−xFAxPbI3 Quantum Dot Solar Cells With Reduced Phase Segregation,” Nature Energy 5, no. 1 (2020): 79-88.

[179]

K. Ji, J. Yuan, F. Li, et al., “High-Efficiency Perovskite Quantum Dot Solar Cells Benefiting From a Conjugated Polymer-Quantum Dot Bulk Heterojunction Connecting Layer,” Journal of Materials Chemistry A 8, no. 16 (2020): 8104-8112.

[180]

D. Jia, J. Chen, M. Yu, et al., “Dual Passivation of CsPbI3 Perovskite Nanocrystals With Amino Acid Ligands for Efficient Quantum Dot Solar Cells,” Small 16, no. 24 (2020): 2001772.

[181]

X. Ling, J. Yuan, X. Zhang, et al., “Guanidinium-Assisted Surface Matrix Engineering for Highly Efficient Perovskite Quantum Dot Photovoltaics,” Advanced Materials 32, no. 26 (2020): 2001906.

[182]

J. Kim, S. Cho, F. Dinic, et al., “Hydrophobic Stabilizer-Anchored Fully Inorganic Perovskite Quantum Dots Enhance Moisture Resistance and Photovoltaic Performance,” Nano Energy 75 (2020): 104985.

[183]

C. Bi, X. Sun, X. Huang, et al., “Stable CsPb1−xZnxI3 Colloidal Quantum Dots With Ultralow Density of Trap States for High-Performance Solar Cells,” Chemistry of Materials 32, no. 14 (2020): 6105-6113.

[184]

L. Zhang, C. Kang, G. Zhang, et al., “All-Inorganic CsPbI3 Quantum Dot Solar Cells With Efficiency Over 16% by Defect Control,” Advanced Functional Materials 31, no. 4 (2021): 2005930.

[185]

J. Zhang, Z. Jin, L. Liang, et al., “Iodine-Optimized Interface for Inorganic CsPbI2Br Perovskite Solar Cell to Attain High Stabilized Efficiency Exceeding 14%,” Advanced Science 5, no. 12 (2018): 1801123.

[186]

R. Han, Q. Zhao, J. Su, et al., “Role of Methyl Acetate in Highly Reproducible Efficient CsPbI3 Perovskite Quantum Dot Solar Cells,” Journal of Physical Chemistry C 125, no. 16 (2021): 8469-8478.

[187]

D. Cao and Y. Wang, “Ion Migration in Metal Halide Perovskites: Characterization Protocols and Physicochemical Mechanisms,” Journal of Physical Chemistry Letters 15, no. 27 (2024): 6986-6995.

[188]

H. Zai, Y. Ma, Q. Chen, and H. Zhou, “Ion Migration in Halide Perovskite Solar Cells: Mechanism, Characterization, Impact and Suppression,” Journal of Energy Chemistry 63 (2021): 528-549.

[189]

Y. Ling, Z. Yuan, Y. Tian, et al., “Bright Light-Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets,” Advanced Materials 28, no. 2 (2016): 305-311.

[190]

S. W. Dai, B. W. Hsu, C. Y. Chen, et al., “Perovskite Quantum Dots With Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis,” Advanced Materials 30, no. 7 (2018): 1705532.

[191]

H. S. Yang, E. H. Suh, S. H. Noh, et al., “Facile Low-Energy and High-Yield Synthesis of Stable α-CsPbI3 Perovskite Quantum Dots: Decomposition Mechanisms and Solar Cell Applications,” Chemical Engineering Journal 454 (2023): 140331.

[192]

M. Zhang, X. Mei, G. Wang, J. Qiu, Z. Sun, and X. Zhang, “Suppressed Surface Lattice Vacancies and Distortion Through Lattice Anchoring for Efficient FAPbI3 Perovskite Quantum Dot Solar Cells,” Energy & Environmental Science 18 (2025): 300-312.

[193]

M. Que, S. He, Y. Li, et al., “Electrostatic Harmonization for Superior Charge Extraction at Interface for Stable High-Efficiency FAPbI3 Quantum Dots Solar Cells,” Small 21 (2025): 2410504.

[194]

H.-R. Kim, J.-H. Bong, J.-H. Park, et al., “Cesium Lead Bromide (CsPbBr3) Perovskite Quantum Dot-Based Photosensor for Chemiluminescence Immunoassays,” ACS Applied Materials & Interfaces 13, no. 25 (2021): 29392-29405.

[195]

I. Ka, L. F. Gerlein, I. M. Asuo, R. Nechache, and S. G. Cloutier, “An Ultra-Broadband Perovskite-PbS Quantum Dot Sensitized Carbon Nanotube Photodetector,” Nanoscale 10, no. 19 (2018): 9044-9052.

[196]

G. Getachew, C. Korupalli, A. S. Rasal, W. B. Dirersa, M. Z. Fahmi, and J.-Y. Chang, “Highly Luminescent, Stable, and Red-Emitting CsMgxPb1−xI3 Quantum Dots for Dual-Modal Imaging-Guided Photodynamic Therapy and Photocatalytic Activity,” ACS Applied Materials & Interfaces 14, no. 1 (2021): 278-296.

[197]

S. Yakunin, D. N. Dirin, Y. Shynkarenko, et al., “Detection of Gamma Photons Using Solution-Grown Single Crystals of Hybrid Lead Halide Perovskites,” Nature Photonics 10, no. 9 (2016): 585-589.

[198]

Y. He, I. Hadar, and M. G. Kanatzidis, “Detecting Ionizing Radiation Using Halide Perovskite Semiconductors Processed Through Solution and Alternative Methods,” Nature Photonics 16, no. 1 (2022): 14-26.

[199]

P. Zhang, G. Yang, F. Li, J. Shi, and H. Zhong, “Direct In Situ Photolithography of Perovskite Quantum Dots Based on Photocatalysis of Lead Bromide Complexes,” Nature Communications 13, no. 1 (2022): 6713.

[200]

K. Shen, H. Xu, X. Li, et al., “Flexible and Self-Powered Photodetector Arrays Based on All-Inorganic CsPbBr3 Quantum Dots,” Advanced Materials 32, no. 22 (2020): 2000004.

[201]

M. I. Saleem, S. Yang, R. Zhi, et al., “Surface Engineering of All-Inorganic Perovskite Quantum Dots With Quasi Core−Shell Technique for High-Performance Photodetectors,” Advanced Materials Interfaces 7, no. 11 (2020): 2000360.

[202]

S. Premkumar, D. Liu, Y. Zhang, et al., “Stable Lead-Free Silver Bismuth Iodide Perovskite Quantum Dots for UV Photodetection,” ACS Applied Nano Materials 3, no. 9 (2020): 9141-9150.

[203]

H. Zhou, M. Chen, C. Liu, et al., “Interfacial Passivation of CsPbI3 Quantum Dots Improves the Performance of Hole-Transport-Layer-Free Perovskite Photodetectors,” Discover Nano 18, no. 1 (2023): 11.

[204]

Z. Zheng, F. Zhuge, Y. Wang, et al., “Decorating Perovskite Quantum Dots in TiO2 Nanotubes Array for Broadband Response Photodetector,” Advanced Functional Materials 27, no. 43 (2017): 1703115.

[205]

T. Zou, X. Liu, R. Qiu, et al., “Enhanced UV-C Detection of Perovskite Photodetector Arrays via Inorganic CsPbBr3 Quantum Dot Down-Conversion Layer,” Advanced Optical Materials 7, no. 11 (2019): 1801812.

[206]

F. A. Chowdhury, B. Pradhan, Y. Ding, et al., “Perovskite Quantum Dot-Reduced Graphene Oxide Superstructure for Efficient Photodetection,” ACS Applied Materials & Interfaces 12, no. 40 (2020): 45165-45173.

[207]

R. Pan, H. Li, J. Wang, et al., “High-Responsivity Photodetectors Based on Formamidinium Lead Halide Perovskite Quantum Dot-Graphene Hybrid,” Particle & Particle Systems Characterization 35, no. 4 (2018): 1700304.

[208]

J. Zheng, J. Jiang, W. Di, et al., “Hybrid Graphene-Perovskite Quantum Dot Photodetectors With Solar-Blind UV and Visible Light Response,” IEEE Photonics Technology Letters 34, no. 2 (2021): 101-104.

[209]

C. Zou, Y. Xi, C. Y. Huang, et al., “A Highly Sensitive UV-Vis-NIR All-Inorganic Perovskite Quantum Dot Phototransistor Based on a Layered Heterojunction,” Advanced Optical Materials 6, no. 14 (2018): 1800324.

[210]

B. Yang, P. Guo, D. Hao, et al., “Self-Powered Photodetectors Based on CsPbBr3 Quantum Dots/Organic Semiconductors/SnO2 Heterojunction for Weak Light Detection,” Science China Materials 66, no. 2 (2023): 716-723.

[211]

S. Yan, Q. Li, X. Zhang, S. Tang, W. Lei, and J. Chen, “A Vertical Structure Photodetector Based on All-Inorganic Perovskite Quantum Dots,” Journal of the Society for Information Display 28, no. 1 (2020): 9-15.

[212]

H. Wu, H. Si, Z. Zhang, et al., “All-Inorganic Perovskite Quantum Dot-Monolayer MoS2 Mixed-Dimensional Van Der Waals Heterostructure for Ultrasensitive Photodetector,” Advanced Science 5, no. 12 (2018): 1801219.

[213]

G. Yang, C. Zheng, Y. Zhu, et al., “Efficient Quantum Cutting of Lanthanum and Ytterbium Ions Co-Doped Perovskite Quantum Dots Towards Improving the Ultraviolet Response of Silicon-Based Photodetectors,” Journal of Alloys and Compounds 921 (2022): 166097.

[214]

S.-J. Jeong, S. Cho, B. Moon, et al., “Zero Dimensional-Two Dimensional Hybrid Photodetectors Using Multilayer MoS2 and Lead Halide Perovskite Quantum Dots With a Tunable Bandgap,” ACS Applied Materials & Interfaces 15, no. 4 (2023): 5432-5438.

[215]

Y. Zhang, J. Liu, Z. Wang, et al., “Synthesis, Properties, and Optical Applications of Low-Dimensional Perovskites,” Chemical Communications 52, no. 94 (2016): 13637-13655.

[216]

M. I. Saleem, A. K. K. Kyaw, and J. Hur, “Infrared Photodetectors: Recent Advances and Challenges Toward Innovation for Image Sensing Applications,” Advanced Optical Materials 12, no. 33 (2024): 2401625.

[217]

J. George K, V. V. Halali, C. G. Sanjayan, V. Suvina, M. Sakar, and R. G. Balakrishna, “Perovskite Nanomaterials as Optical and Electrochemical Sensors,” Inorganic Chemistry Frontiers 7, no. 14 (2020): 2702-2725.

[218]

A. Wang, C. Zuo, X. Niu, L. Ding, J. Ding, and F. Hao, “Recent Promise of Lead-Free Halide Perovskites in Optoelectronic Applications,” Chemical Engineering Journal 451 (2023): 138926.

[219]

W.-H. Gao and C. J. N. E. Chen, “Perovskites and Their Constructed Near-Infrared Photodetectors,” Nano Energy 128 (2024): 109904.

[220]

S. Miao and Y. Cho, “Toward Green Optoelectronics: Environmental-Friendly Colloidal Quantum Dots Photodetectors,” Frontiers in Energy Research 9 (2021): 666534.

[221]

S. Panchanan, G. Dastgeer, S. Dutta, et al., “Cerium-Based Halide Perovskite Derivatives: A Promising Alternative for Lead-Free Narrowband UV Photodetection,” Matter 7, no. 11 (2024): 3949-3969.

[222]

Z. Fang, W. Chen, Y. Shi, et al., “Dual Passivation of Perovskite Defects for Light-Emitting Diodes With External Quantum Efficiency Exceeding 20%,” Advanced Functional Materials 30, no. 12 (2020): 1909754.

[223]

Z. Liu, W. Qiu, X. Peng, et al., “Perovskite Light-Emitting Diodes With EQE Exceeding 28% Through a Synergetic Dual-Additive Strategy for Defect Passivation and Nanostructure Regulation,” Advanced Materials 33, no. 43 (2021): 2103268.

[224]

J. S. Kim, J.-M. Heo, G.-S. Park, et al., “Ultra-Bright, Efficient and Stable Perovskite Light-Emitting Diodes,” Nature 611, no. 7937 (2022): 688-694.

[225]

W. Bai, T. Xuan, H. Zhao, et al., “Perovskite Light-Emitting Diodes With an External Quantum Efficiency Exceeding 30%,” Advanced Materials 35, no. 39 (2023): 2302283.

[226]

Y.-F. Li, J. Feng, and H.-B. Sun, “Perovskite Quantum Dots for Light-Emitting Devices,” Nanoscale 11, no. 41 (2019): 19119-19139.

[227]

T. Chiba and J. Kido, “Lead Halide Perovskite Quantum Dots for Light-Emitting Devices,” Journal of Materials Chemistry C 6, no. 44 (2018): 11868-11877.

[228]

Y. Hu, S. Cao, P. Qiu, M. Yu, and H. Wei, “All-Inorganic Perovskite Quantum Dot-Based Blue Light-Emitting Diodes: Recent Advances and Strategies,” Nanomaterials 12, no. 24 (2022): 4372.

[229]

H. Huang, F. Zhao, L. Liu, et al., “Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route Toward Efficient Light-Emitting Diodes,” ACS Applied Materials & Interfaces 7, no. 51 (2015): 28128-28133.

[230]

W. Deng, X. Xu, X. Zhang, et al., “Organometal Halide Perovskite Quantum Dot Light-Emitting Diodes,” Advanced Functional Materials 26, no. 26 (2016): 4797-4802.

[231]

J. Xing, F. Yan, Y. Zhao, et al., “High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles,” ACS Nano 10, no. 7 (2016): 6623-6630.

[232]

Y.-H. Kim, G.-H. Lee, Y.-T. Kim, et al., “High Efficiency Perovskite Light-Emitting Diodes of Ligand-Engineered Colloidal Formamidinium Lead Bromide Nanoparticles,” Nano Energy 38 (2017): 51-58.

[233]

J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3),” Advanced Materials 27, no. 44 (2015): 7162-7167.

[234]

J. Li, L. Xu, T. Wang, et al., “50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control,” Advanced Materials 29, no. 5 (2017): 1603885.

[235]

T. Chiba, Y. Hayashi, H. Ebe, et al., “Anion-Exchange Red Perovskite Quantum Dots With Ammonium Iodine Salts for Highly Efficient Light-Emitting Devices,” Nature Photonics 12, no. 11 (2018): 681-687.

[236]

J. Song, T. Fang, J. Li, et al., “Organic-Inorganic Hybrid Passivation Enables Perovskite QLEDs With an EQE of 16.48%,” Advanced Materials 30, no. 50 (2018): 1805409.

[237]

Z. Shi, S. Li, Y. Li, et al., “Strategy of Solution-Processed All-Inorganic Heterostructure for Humidity/Temperature-Stable Perovskite Quantum Dot Light-Emitting Diodes,” ACS Nano 12, no. 2 (2018): 1462-1472.

[238]

L. Shi, L. Meng, F. Jiang, et al., “In Situ Inkjet Printing Strategy for Fabricating Perovskite Quantum Dot Patterns,” Advanced Functional Materials 29, no. 37 (2019): 1903648.

[239]

D. Yang, X. Li, Y. Wu, et al., “Surface Halogen Compensation for Robust Performance Enhancements of CsPbX3 Perovskite Quantum Dots,” Advanced Optical Materials 7, no. 11 (2019): 1900276.

[240]

Y. R. Park, H. H. Kim, S. Eom, et al., “Luminance Efficiency Roll-Off Mechanism in CsPbBr3−xClx Mixed-Halide Perovskite Quantum Dot Blue Light-Emitting Diodes,” Journal of Materials Chemistry C 9, no. 10 (2021): 3608-3619.

[241]

X. Zheng, S. Yuan, J. Liu, et al., “Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes,” ACS Energy Letters 5, no. 3 (2020): 793-798.

[242]

H. Shao, Y. Zhai, X. Wu, et al., “High Brightness Blue Light-Emitting Diodes Based on CsPb(Cl/Br)3 Perovskite QDs With Phenethylammonium Chloride Passivation,” Nanoscale 12, no. 21 (2020): 11728-11734.

[243]

H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung, and A. L. Rogach, “Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature,” Advanced Science 2, no. 9 (2015): 1500194.

[244]

L. Peng, J. Geng, L. Ai, Y. Zhang, R. Xie, and W. Yang, “Room Temperature Synthesis of Ultra-Small, Near-Unity Single-Sized Lead Halide Perovskite Quantum Dots With Wide Color Emission Tunability, High Color Purity and High Brightness,” Nanotechnology 27, no. 33 (2016): 335604.

[245]

J. Cao, C. Yan, C. Luo, et al., “Cryogenic-Temperature Thermodynamically Suppressed and Strongly Confined CsPbBr3 Quantum Dots for Deeply Blue Light-Emitting Diodes,” Advanced Optical Materials 9, no. 17 (2021): 2100300.

[246]

X. Kong, Y. Wu, F. Xu, S. Yang, and B. Cao, “Ultrasmall CsPbBr3 Quantum Dots With Bright and Wide Blue Emissions,” Physica Status Solidi (RRL)-Rapid Research Letters 15, no. 7 (2021): 2100134.

[247]

H. Yang, Y. Feng, Z. Tu, et al., “Blue Emitting CsPbBr3 Perovskite Quantum Dot Inks Obtained From Sustained Release Tablets,” Nano Research 12 (2019): 3129-3134.

[248]

L. Xu, J. Li, B. Cai, et al., “A Bilateral Interfacial Passivation Strategy Promoting Efficiency and Stability of Perovskite Quantum Dot Light-Emitting Diodes,” Nature Communications 11, no. 1 (2020): 3902.

[249]

Y. Dong, Y.-K. Wang, F. Yuan, et al., “Bipolar-Shell Resurfacing for Blue LEDs Based on Strongly Confined Perovskite Quantum Dots,” Nature Nanotechnology 15, no. 8 (2020): 668-674.

[250]

E. Horváth, M. Spina, Z. Szekrényes, et al., “Nanowires of Methylammonium Lead Iodide (CH3NH3PbI3) Prepared by Low Temperature Solution-Mediated Crystallization,” Nano Letters 14, no. 12 (2014): 6761-6766.

[251]

C. Yan, C. Luo, W. Li, et al., “Thermodynamics-Induced Injection Enhanced Deep-Blue Perovskite Quantum Dot LEDs,” ACS Applied Materials & Interfaces 13, no. 48 (2021): 57560-57566.

[252]

A. Liu, C. Bi, R. Guo, M. Zhang, X. Qu, and J. Tian, “Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Light-Emitting Diodes,” Advanced Optical Materials 9, no. 18 (2021): 2002167.

[253]

H. He, S. Mei, Z. Wen, et al., “Recent Advances in Blue Perovskite Quantum Dots for Light-Emitting Diodes,” Small 18, no. 1 (2022): 2103527.

[254]

G. Dai, L. Wang, S. Cheng, et al., “Perovskite Quantum Dots Based Optical Fabry-Pérot Pressure Sensor,” ACS Photonics 7, no. 9 (2020): 2390-2394.

[255]

Y. Huang, J. Zhang, X. Zhang, et al., “The Ammonia Detection of Cesium Lead Halide Perovskite Quantum Dots in Different Halogen Ratios at Room Temperature,” Optical Materials 134 (2022): 113155.

[256]

A. K. Singh, S. Singh, V. N. Singh, G. Gupta, and B. K. Gupta, “Probing Reversible Photoluminescence Alteration in CH3NH3PbBr3 Colloidal Quantum Dots for Luminescence-Based Gas Sensing Application,” Journal of Colloid and Interface Science 554 (2019): 668-673.

[257]

H. Huang, M. Hao, Y. Song, S. Dang, X. Liu, and Q. Dong, “Dynamic Passivation in Perovskite Quantum Dots for Specific Ammonia Detection at Room Temperature,” Small 16, no. 6 (2020): 1904462.

[258]

L. Yueyue, S. Siqi, W. Yilin, et al., “CsPbBr3 Quantum Dots Enhanced ZnO Sensing to NO2 at Room Temperature,” Sensors and Actuators B: Chemical 368 (2022): 132189.

[259]

W. Wu, C. Zhao, M. Hu, A. Pan, W. Xiong, and Y. Chen, “CsPbBr3 Perovskite Quantum Dots Grown Within Fe-Doped Zeolite X With Improved Stability for Sensitive NH3 Detection,” Nanoscale 15, no. 12 (2023): 5705-5711.

[260]

X. Zhang, J. Lv, J. Liu, et al., “Stable EMT Type Zeolite/CsPbBr3 Perovskite Quantum Dot Nanocomposites for Highly Sensitive Humidity Sensors,” Journal of Colloid and Interface Science 616 (2022): 921-928.

[261]

C. G. Sanjayan and R. G. Balakrishna, “Phase Transferred and Non-Coated, Water Soluble Perovskite Quantum Dots for Biocompatibility and Sensing,” Journal of Materials Chemistry B 11, no. 10 (2023): 2184-2190.

[262]

C. Gu and J.-S. Lee, “Flexible Hybrid Organic-Inorganic Perovskite Memory,” ACS Nano 10, no. 5 (2016): 5413-5418.

[263]

D. J. Kim, Y. J. Tak, W. G. Kim, J. K. Kim, J. H. Kim, and H. J. Kim, “Resistive Switching Properties Through Iodine Migrations of a Hybrid Perovskite Insulating Layer,” Advanced Materials Interfaces 4, no. 6 (2017): 1601035.

[264]

H. An, W. K. Kim, C. Wu, and T. W. Kim, “Highly-Stable Memristive Devices Based on Poly (Methylmethacrylate): CsPbCl3 Perovskite Quantum Dot Hybrid Nanocomposites,” Organic Electronics 56 (2018): 41-45.

[265]

Y. Wang, Z. Lv, Q. Liao, et al., “Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching,” Advanced Materials 30, no. 28 (2018): 1800327.

[266]

Y. Wang, Z. Lv, J. Chen, et al., “Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing,” Advanced Materials 30, no. 38 (2018): 1802883.

[267]

Z. Chen, Y. Zhang, Y. Yu, et al., “Light Assisted Multilevel Resistive Switching Memory Devices Based on All-Inorganic Perovskite Quantum Dots,” Applied Physics Letters 114, no. 18 (2019): 181103.

[268]

D. Hao, J. Zhang, S. Dai, J. Zhang, and J. Huang, “Perovskite/Organic Semiconductor-Based Photonic Synaptic Transistor for Artificial Visual System,” ACS Applied Materials & Interfaces 12, no. 35 (2020): 39487-39495.

[269]

M.-C. Yen, C.-J. Lee, K.-H. Liu, et al., “All-Inorganic Perovskite Quantum Dot Light-Emitting Memories,” Nature Communications 12, no. 1 (2021): 4460.

[270]

Y. Wang, Y. Gong, S. Huang, et al., “Memristor-Based Biomimetic Compound Eye for Real-Time Collision Detection,” Nature Communications 12, no. 1 (2021): 5979.

[271]

R. A. John, Y. Demirağ, Y. Shynkarenko, et al., “Reconfigurable Halide Perovskite Nanocrystal Memristors for Neuromorphic Computing,” Nature Communications 13, no. 1 (2022): 2074.

[272]

Q. Jiang, Y. Ren, Z. Cui, et al., “CsPbBr3 Perovskite Quantum Dots Embedded in Polystyrene-Poly2-Vinyl Pyridine Copolymer for Robust and Light-Tunable Memristors,” ACS Applied Nano Materials 6 (2023): 8655-8667.

[273]

P. Sun, Z. Xing, Z. Li, and W. Zhou, “Recent Advances in Quantum Dots Photocatalysts,” Chemical Engineering Journal 458 (2023): 141399.

[274]

E. M. Akinoglu, D. A. Hoogeveen, C. Cao, A. N. Simonov, and J. J. Jasieniak, “Prospects of Z-Scheme Photocatalytic Systems Based on Metal Halide Perovskites,” ACS Nano 15, no. 5 (2021): 7860-7878.

[275]

J. Wang, J. Wang, N. Li, et al., “Direct Z-Scheme 0D/2D Heterojunction of CsPbBr3 Quantum Dots/Bi2WO6 Nanosheets for Efficient Photocatalytic CO2 Reduction,” ACS Applied Materials & Interfaces 12, no. 28 (2020): 31477-31485.

[276]

Y.-F. Xu, M.-Z. Yang, B.-X. Chen, et al., “A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction,” Journal of the American Chemical Society 139, no. 16 (2017): 5660-5663.

[277]

L. Y. Wu, Y. F. Mu, X. X. Guo, et al., “Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction,” Angewandte Chemie International Edition 58, no. 28 (2019): 9491-9495.

[278]

X. Zhang, M. He, H. Fang, et al., “Additional Electron Transfer Channels of Thermostable 0D Cs (Pb: Pt) Br3 Perovskite Quantum Dots/2D Accordion-Like Ni-MOF Nanojunction for Photocatalytic H2 Evolution,” International Journal of Hydrogen Energy 47, no. 97 (2022): 40860-40871.

[279]

Y. Li, C. Zhuang, S. Qiu, et al., “Cs-Cu-Cl Perovskite Quantum Dots for Photocatalytic H2 Evolution With Super-High Stability,” Applied Catalysis, B: Environmental 337 (2023): 122881.

[280]

C. Zhao, H. Song, Y. Chen, et al., “Stable and Recyclable Photocatalysts of CsPbBr3@MSNs Nanocomposites for Photoinduced Electron Transfer RAFT Polymerization,” ACS Energy Letters 7, no. 12 (2022): 4389-4397.

[281]

D. Cardenas-Morcoso, A. F. Gualdrón-Reyes, A. B. Ferreira Vitoreti, et al., “Photocatalytic and Photoelectrochemical Degradation of Organic Compounds With All-Inorganic Metal Halide Perovskite Quantum Dots,” Journal of Physical Chemistry Letters 10, no. 3 (2019): 630-636.

[282]

Y. Chen and Y. Zhao, “Incorporating Quantum Dots for High Efficiency and Stable Perovskite Photovoltaics,” Journal of Materials Chemistry A 8, no. 47 (2020): 25017-25027.

[283]

K. Sanglee, M. Nukunudompanich, F. Part, et al., “The Current State of the Art in Internal Additive Materials and Quantum Dots for Improving Efficiency and Stability Against Humidity in Perovskite Solar Cells,” Heliyon 8, no. 12 (2022): e11878.

[284]

L. Sinatra, M. Lutfullin, S. L. Mozo, J. Pan, and O. M. Bakr, “P-124: Perovskite Quantum Dots Display: Challenges and Opportunities,” SID Symposium Digest of Technical Papers 50, no. 1 (2019): 1712-1715.

[285]

S. Wang, Q. Zhao, A. Hazarika, et al., “Thermal Tolerance of Perovskite Quantum Dots Dependent on A-Site Cation and Surface Ligand,” Nature Communications 14, no. 1 (2023): 2216.

[286]

M. L. Meena, K. K. Gupta, S. Dutta, et al., “Short Review on the Instability and Potential Solutions for Perovskite Quantum Dots,” Current Research in Green and Sustainable Chemistry 5 (2022): 100321.

[287]

G. T. S. How, M. A. M. Sarjidan, B. T. Goh, B. K. Yap, and E. Mahmoud, “Perovskites in Next Generation Memory Devices,” in Recent Advances in Multifunctional Perovskite Materials, ed. P. Sharma (IntechOpen, 2022), 105360.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

43

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/