Deciphering Transition Metal Diffusion in Anode Battery Materials: A Study on Nb Diffusion in NbxTi1−xO2

Ola Kenji Forslund , Carmen Cavallo , Johan Cedervall , Jun Sugiyama , Kazuki Ohishi , Akihiro Koda , Alessandro Latini , Aleksandar Matic , Martin Månsson , Yasmine Sassa

Carbon Energy ›› 2025, Vol. 7 ›› Issue (8) : e70017

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (8) : e70017 DOI: 10.1002/cey2.70017
RESEARCH ARTICLE

Deciphering Transition Metal Diffusion in Anode Battery Materials: A Study on Nb Diffusion in NbxTi1−xO2

Author information +
History +
PDF

Abstract

Demand for fast-charging lithium-ion batteries (LIBs) has escalated incredibly in the past few years. A conventional method to improve the performance is to chemically partly substitute the transition metal with another to increase its conductivity. In this study, we have chosen to investigate the lithium diffusion in doped anatase (TiO2) anodes for high-rate LIBs. Substitutional doping of TiO2 with the pentavalent Nb has previously been shown to increase the high-rate performances of this anode material dramatically. Despite the conventional belief, we explicitly show that Nb is mobile and diffusing at room temperature, and different diffusion mechanisms are discussed. Diffusing Nb in TiO2 has staggering implications concerning most chemically substituted LIBs and their performance. While the only mobile ion is typically asserted to be Li, this study clearly shows that the transition metals are also diffusing, together with the Li. This implies that a method that can hinder the diffusion of transition metals will increase the performance of our current LIBs even further.

Keywords

batteries / diffusion / electrocatalysis / energy storage and conversion / muon spin relaxation / TiO2 / transition metal

Cite this article

Download citation ▾
Ola Kenji Forslund, Carmen Cavallo, Johan Cedervall, Jun Sugiyama, Kazuki Ohishi, Akihiro Koda, Alessandro Latini, Aleksandar Matic, Martin Månsson, Yasmine Sassa. Deciphering Transition Metal Diffusion in Anode Battery Materials: A Study on Nb Diffusion in NbxTi1−xO2. Carbon Energy, 2025, 7(8): e70017 DOI:10.1002/cey2.70017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. P. Grey and N. Dupré, “NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries,” Chemical Reviews 104, no. 10 (2004): 4493-4512.

[2]

P. Heitjans, S. Indris, and M. Wilkening, “Solid-State Diffusion and NMR,” Diffusion Fundamentals 2 (2005): 1-20.

[3]

K. Nakamura, H. Ohno, K. Okamura, Y. Michihiro, I. Nakabayashi, and T. Kanashiro, “On the Diffusion of Li+ Defects in LiCoO2 and LiNiO2,” Solid State Ionics 135, no. 1 (2000): 143-147.

[4]

A. Van der Ven, “Lithium Diffusion in Layered LixCoO2,” Electrochemical and Solid-State Letters 3, no. 7 (May 1999): 301.

[5]

J. Sugiyama, K. Mukai, Y. Ikedo, H. Nozaki, M. Månsson, and I. Watanabe, “Li Diffusion in LixCoO2 Probed by Muon-Spin Spectroscopy,” Physical Review Letters 103 (September 2009): 147601.

[6]

J. Sugiyama, H. Nozaki, M. Harada, et al., “Magnetic and Diffusive Nature of LiFePO4 Investigated by Muon Spin Rotation and Relaxation,” Physical Review B 84 (2011): 054430.

[7]

J. Sugiyama, I. Umegaki, M. Matsumoto, et al., “Desorption Reaction in MgH2 Studied With In Situ μ+Sr,” Sustainable Energy & Fuels 3 (2019): 956-964.

[8]

I. McClelland, B. Johnston, P. J. Baker, M. Amores, E. J. Cussen, and S. A. Corr, “Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials,” Annual Review of Materials Research 50, no. 1 (2020): 371-393.

[9]

J. N. Zhang, Q. Li, C. Ouyang, et al., “Trace Doping of Multiple Elements Enables Stable Battery Cycling of LiCoO2 at 4.6 V,” Nature Energy 4, no. 7 (2019): 594-603.

[10]

H. Qian, H. Ren, Y. Zhang, et al., “Surface Doping vs. Bulk Doping of Cathode Materials for Lithium-Ion Batteries: A Review,” Electrochemical Energy Reviews 5, no. 4 (2022): 2.

[11]

S. B. Sulaiman, N. Sahoo, S. Srinivas, et al., “Theory of Location and Associated Hyperfine Properties of the Positive Muon in La2CuO4,” Hyperfine Interactions 84, no. 1 (1994): 87-103.

[12]

C. Cavallo, G. Calcagno, R. P. de Carvalho, et al., “Effect of the Niobium Doping Concentration on the Charge Storage Mechanism of Mesoporous Anatase Beads as an Anode for High-Rate Li-Ion Batteries,” ACS Applied Energy Materials 4, no. 1 (2021): 215-225.

[13]

L. R. Sheppard, T. Bak, and J. Nowotny, “Electrical Properties of Niobium-Doped Titanium Dioxide. 1. Defect Disorder,” Journal of Physical Chemistry B 110, no. 45 (2006): 22447-22454.

[14]

K. Yang, Y. Dai, B. Huang, and Y. P. Feng, “First-Principles GGA+U Study of the Different Conducting Properties in Pentavalent-Ion-Doped Anatase and Rutile TiO2,” Journal of Physics D: Applied Physics 47, no. 27 (2014): 275101.

[15]

M. Matsubara, R. Saniz, B. Partoens, and D. Lamoen, “Doping Anatase TiO2 With Group V-b and VI-b Transition Metal Atoms: A Hybrid Functional First-Principles Study,” Physical Chemistry Chemical Physics 19 (2017): 1945-1952.

[16]

A. Tomaszewska, Z. Chu, X. Feng, et al., “Lithium-Ion Battery Fast Charging: A Review,” eTransportation 1 (2019): 100011.

[17]

E. R. Logan and J. R. Dahn, “Electrolyte Design for Fast-Charging Li-Ion Batteries,” Trends in Chemistry 2, no. 4 (2020): 354-366.

[18]

O. K. Forslund, R. Toft-Petersen, V. David, et al., Li-Ion Diffusion in Single Crystal LiFePO4 Measured by Muon Spin Spectroscopy, arXiv:2111.11941 (2021), https://arxiv.org/abs/2111.11941.

[19]

O. K. Forslund, H. Ohta, K. Kamazawa, et al., “Revisiting the a-Type Antiferromagnet NaNiO2 With Muon Spin Rotation Measurements and Density Functional Theory Calculations,” Physical Review B 102 (November 2020): 184412.

[20]

J. Sugiyama, O. K. Forslund, E. Nocerino, et al., “Lithium Diffusion in LiMnPO4 Detected With µ±SR,” Physical Review Research 2 (July 2020): 033161.

[21]

P. Giannozzi, O. Andreussi, T. Brumme, et al., “Advanced Capabilities for Materials Modelling With Quantum ESPRESSO,” Journal of Physics: Condensed Matter 29, no. 46 (2017): 465901.

[22]

J. Sugiyama, K. Ohishi, O. K. Forslund, et al., “How Li Diffusion in Spinel Li[Ni1/2Mn3/2]O4 is Seen With µ±SR,” Zeitschrift für Physikalische Chemie 236, no. 6-8 (2022): 799-816.

[23]

M. Månsson and J. Sugiyama, “Muon-Spin Relaxation Study on Li- and Na-Diffusion in Solids,” Physica Scripta 88, no. 6 (2013): 068509.

[24]

N. Matsubara, E. Nocerino, O. K. Forslund, et al., “Magnetism and Ion Diffusion in Honeycomb Layered Oxide Ni2TeO6,” Scientific Reports 10, no. 1 (2020): 18305.

[25]

J. Sugiyama, H. Nozaki, I. Umegaki, et al, “Li-Ion Diffusion in Li4Ti5O12 and LiTi2O4 Battery Materials Detected by Muon Spin Spectroscopy,” Physical Review B 92 (2015): 014417.

[26]

M. Wagemaker. Structure and Dynamics of Lithium in Anatase TiO2 (Delft University Press, 2003), 142.

[27]

J. B. Richard and G. J. Dienes, An Introduction To Solid State Diffusion (Elsevier, 2012).

[28]

E. Nocerino, O. K. Forslund, H. Sakurai, et al., “Na-Ion Dynamics in the Solid Solution NaxCa1−xCr2O4 Studied by Muon Spin Rotation and Neutron Diffraction,” Sustainable Energy & Fuels 8 (2024): 1424-1437.

[29]

L. Leng, J. Li, X. Zeng, et al, “Spinel LiMn2O4 Nanoparticles Grown in Situ on Nitrogen-Doped Reduced Graphene Oxide as an Efficient Cathode for a LiO2/Li-Ion Twin Battery,” ACS Sustainable Chemistry & Engineering 7, no. 1 (2019): 430-439.

[30]

M. M. Thackeray and K. Amine, “Li4Ti5O12 Spinel Anodes,” Nature Energy 6, no. 6 (2021): 683.

[31]

S. Paul, M. A. Rahman, S. B. Sharif, J. H. Kim, S. Siddiqui, and M. Hossain, “TiO2 as an Anode of High-Performance Lithium-Ion Batteries: A Comprehensive Review Towards Practical Application,” Nanomaterials 12, no. 12 (2022): 2034.

[32]

M. Jiang, Y. Zhang, Z. Yang, et al., “A Data-Driven Interpretable Method to Predict Capacities of Metal Ion Doped TiO2 Anode Materials for Lithiumion Batteries Using Machine Learning Classifiers,” Inorganic Chemistry Frontiers 10 (2023): 6646-6654.

[33]

Y. Jia, J. Liu, and L. Shang, “Layered Structure 2D MXene/TiO2 Composites as High-Performance Anodes for Lithium-Ion Batteries,” Ionics 29, no. 2 (2023): 531-537.

[34]

G. Zhou, X. Sun, Q. H. Li, et al., “Mn Ion Dissolution Mechanism for Lithium-Ion Battery With LiMn2O4 Cathode: In Situ Ultraviolet-Visible Spectroscopy and Ab Initio Molecular Dynamics Simulations,” Journal of Physical Chemistry Letters 11, no. 8 (2020): 3051-3057.

[35]

S. Lindberg, C. Cavallo, G. Calcagno, A. M. Navarro-Suárez, P. Johansson, and A. Matic, “Electrochemical Behaviour of Nb-Doped Anatase TiO2 Microbeads in an Ionic Liquid Electrolyte,” Batteries & Supercaps 3, no. 11 (2020): 1233-1238.

[36]

P. Benedek, N. Yazdani, H. Chen, et al., “Surface Phonons of Lithium Ion Battery Active Materials,” Sustainable Energy & Fuels 3 (2019): 508-513.

[37]

A. Suter and B. M. Wojek, “Musrfit: A Free Platform Independent Framework for µSR Data Analysis,” Physics Procedia 30 (2012): 69-73.

[38]

A. Yaouanc and P. D. D. Reotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter, Number 147 (Oxford University Press, 2011).

[39]

O. K. Forslund. “1D to 3D Magnetism in Quantum Materials: A study by Muons, Neutrons & X-Rays” (PhD diss., Kungliga Tekniska Högskolan, 2021).

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/