Electronic Conductive Metal–Organic Frameworks for Aqueous Rechargeable Zinc-Ion Battery Cathodes: Design, Progress, and Prospects

Chuntao Yang , Youlin Xiang , Yingjian Yu

Carbon Energy ›› 2025, Vol. 7 ›› Issue (7) : e70012

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (7) :e70012 DOI: 10.1002/cey2.70012
REVIEW

Electronic Conductive Metal–Organic Frameworks for Aqueous Rechargeable Zinc-Ion Battery Cathodes: Design, Progress, and Prospects

Author information +
History +
PDF

Abstract

Zinc-ion batteries (ZIBs) have significant potential for advancements in energy storage systems owing to their high level of safety and theoretical capacity. However, ZIBs face several challenges, such as cathode capacity degradation and short cycle life. Ordinary metal–organic frameworks (MOFs) are characterized by high specific surface areas, large pore channels, and controllable structures and functions, making them suitable for use in ZIB cathodes with good performance. However, the insulating properties of MOFs hinder their further development. In contrast, electronic conductive MOFs (EC-MOFs) show high electronic conductivity, which facilitates rapid electron transport and ameliorates the charging and discharging efficiency of ZIBs. This paper introduces the unique conduction mechanism of EC-MOFs and elaborates various strategies for constructing EC-MOFs with high conductivity and stability. Additionally, the synthesis methods of EC-MOF-based cathode materials and their properties in ZIBs are elucidated. Finally, this paper presents a summary and outlook on the advancements of EC-MOFs for ZIB cathodes. This review provides guidance for designing and applying EC-MOFs in ZIBs and other energy storage devices.

Keywords

cathode / design / electronic conductive metal–organic framework / synthesis method / zinc-ion battery

Cite this article

Download citation ▾
Chuntao Yang, Youlin Xiang, Yingjian Yu. Electronic Conductive Metal–Organic Frameworks for Aqueous Rechargeable Zinc-Ion Battery Cathodes: Design, Progress, and Prospects. Carbon Energy, 2025, 7(7): e70012 DOI:10.1002/cey2.70012

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Jiang, D. Li, X. Xie, et al., “Electric Double Layer Design for Zn-Based Batteries,” Energy Storage Materials 62 (2023): 102932.

[2]

Y. Liu, X. Xie, and M. Wang, “Energy Structure and Carbon Emission: Analysis Against the Background of the Current Energy Crisis in the EU,” Energy 280 (2023): 128129.

[3]

A. Kundu, T. Kuila, N. C. Murmu, P. Samanta, and S. Das, “Metal-Organic Framework-Derived Advanced Oxygen Electrocatalysts as Air-Cathodes for Zn-Air Batteries: Recent Trends and Future Perspectives,” Materials Horizons 10, no. 3 (2023): 745-787.

[4]

Y. Han and Y. Yu, “Carboxymethyl Cellulose Organic Gel Polymer Electrolyte Enabling High Performance of Germanium-Air Batteries in a Wide Operating Temperature Range From −10°C to 80°C,” Chemical Engineering Journal 504 (2025): 158553.

[5]

Y. Han and Y. Yu, “Ultralong Discharge Time Enabled Using Etched Germanium Anodes in Germanium-Air Batteries,” Chinese Chemical Letters 36 (2025): 110144.

[6]

F. Deng, T. Zhao, X. Zhang, et al., “Reduced Graphene Oxide Assembled on the Si Nanowire Anode Enabling Low Passivation and Hydrogen Evolution for Long-Life Aqueous Si-Air Batteries,” Chinese Chemical Letters 36 (2025): 109897.

[7]

H. Liu, J. Zhang, P. Xiang, S. Zhang, S. Shi, and W. Liu, ““Mobius Strip-Like” FeSn Alloy: A Novel Highly-Distorted 3D Hierarchical Porous Anode for Ultrafast and Stable Li Storage,” Energy Storage Materials 66 (2024): 103234.

[8]

H. Du, Y. Wang, Y. Kang, et al., “Side Reactions/Changes in Lithium-Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries,” Advanced Materials 36, no. 29 (2024): 2401482.

[9]

X. Sun, C. Qin, B. Zhao, et al., “A Cation and Anion Dual-Doping Strategy in Novel Li-Rich Mn-Based Cathode Materials for High-Performance Li Metal Batteries,” Energy Storage Materials 70 (2024): 103559.

[10]

K. Qi, P. Liang, S. Wei, et al., “Trade-Off Between H2O-Rich and H2O-Poor Electric Double Layers Enables Highly Reversible Zn Anodes in Aqueous Zn-Ion Batteries,” Energy & Environmental Science 17, no. 7 (2024): 2566-2575.

[11]

Q. Li, H. Wang, H. Yu, et al., “Engineering an Ultrathin and Hydrophobic Composite Zinc Anode With 24 μm Thickness for High-Performance Zn Batteries,” Advanced Functional Materials 33, no. 40 (2023): 2303466.

[12]

Y. Zhao, K. Feng, and Y. Yu, “A Review on Covalent Organic Frameworks as Artificial Interface Layers for Li and Zn Metal Anodes in Rechargeable Batteries,” Advanced Science 11, no. 7 (2024): 2308087.

[13]

Y. Han, Y. Zhao, and Y. Yu, “Research Progress of Zn-Air Batteries Suitable for Extreme Temperatures,” Energy Storage Materials 69 (2024): 103429.

[14]

Y. Zhao, K. Feng, and Y. Yu, “In Situ Preparation of Zincophilic Covalent-Organic Frameworks With Low Surface Work Function and High Rigidity to Stabilize Zinc Metal Anodes,” Journal of Energy Chemistry 102 (2025): 524-533.

[15]

L. Li, S. Jia, Z. Cheng, and C. Zhang, “Improved Strategies for Ammonium Vanadate-Based Zinc Ion Batteries,” Nanoscale 15 (2023): 9589-9604.

[16]

W. Li, W. Jiang, K. Zhu, et al., “Unlocking the Performance Degradation of Vanadium-Based Cathodes in Aqueous Zinc-Ion Batteries,” Chemical Engineering Journal 496 (2024): 153786.

[17]

X. Chen, X. Xie, P. Ruan, S. Liang, W. Y. Wong, and G. Fang, “Thermodynamics and Kinetics of Conversion Reaction in Zinc Batteries,” ACS Energy Letters 9, no. 5 (2024): 2037-2056.

[18]

Y. Liu and X. Wu, “Strategies for Constructing Manganese-Based Oxide Electrode Materials for Aqueous Rechargeable Zinc-Ion Batteries,” Chinese Chemical Letters 33, no. 3 (2022): 1236-1244.

[19]

Y. Yuan, S. Wu, X. Song, J. Lee, and B. Kang, “Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries,” Energy & Environmental Materials 7, no. 3 (2023): e12632.

[20]

B. Zhao, P. Jia, L. Yu, et al., “Cathode Materials for Aqueous Zinc-Ion Batteries and Prospect of Self-Supporting Electrodes: A Review,” Journal of Energy Storage 73 (2023): 109174.

[21]

Y. Zeng, X. F. Lu, S. L. Zhang, D. Luan, S. Li, and X. W. Lou, “Construction of Co-Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Zn-Ion Batteries,” Angewandte Chemie International Edition 60, no. 41 (2021): 22189-22194.

[22]

Z. Fan, J. Wang, Y. Wu, X. Yan, D. Dai, and X. L. Wu, “Research Progresses on Cathode Materials of Aqueous Zinc-Ion Batteries,” Journal of Energy Chemistry 97 (2024): 237-264.

[23]

K. Feng, Y. Zhao, Z. Liu, and Y. Yu, “Long Cycle Life Aqueous Zinc-Ion Battery Enabled by a ZIF-N Protective Layer With Electron-Withdrawing Group and Zincophilicity on the Zn Anode,” Journal of Colloid and Interface Science 678 (2025): 76-87.

[24]

L. Tang, H. Peng, J. Kang, et al., “Zn-Based Batteries for Sustainable Energy Storage: Strategies and Mechanisms,” Chemical Society Reviews 53 (2024): 4877-4925.

[25]

Q. Zhang, J. Zhao, X. Chen, et al., “Unveiling the Energy Storage Mechanism of MnO2 Polymorphs for Zinc-Manganese Dioxide Batteries,” Advanced Functional Materials 34, no. 30 (2024): 2306652.

[26]

W. Liu, L. Dong, B. Jiang, et al., “Layered Vanadium Oxides With Proton and Zinc Ion Insertion for Zinc Ion Batteries,” Electrochimica Acta 320 (2019): 134565.

[27]

D. Zhang, W. Wang, S. Li, X. Shen, and H. Xu, “Design Strategies and Energy Storage Mechanisms of MOF-Based Aqueous Zinc Ion Battery Cathode Materials,” Energy Storage Materials 69 (2024): 103436.

[28]

Y. Zhu, W. Zhong, W. Chen, et al., “Crystallographic Types Depended Energy Storage Mechanism for Zinc Storage,” Nano Energy 125 (2024): 109524.

[29]

T. Zhou and G. Gao, “Pre-Intercalation Strategy in Vanadium Oxides Cathodes for Aqueous Zinc Ion Batteries: Review and Prospects,” Journal of Energy Storage 84 (2024): 110808.

[30]

X. Zhao, X. Liang, Y. Li, Q. Chen, and M. Chen, “Challenges and Design Strategies for High Performance Aqueous Zinc Ion Batteries,” Energy Storage Materials 42 (2021): 533-569.

[31]

X. Zhao, F. Zhang, H. Li, et al., “Dynamic Heterostructure Design of MnO2 for High-Performance Aqueous Zinc-Ion Batteries,” Energy & Environmental Science 17, no. 10 (2024): 3629-3640.

[32]

C. Zhang, Y. Huang, X. Xu, et al., “Bulk-to-Surface Co-Modification of Layered Hydrated Vanadate Cathode for Aqueous Zinc Ion Batteries,” Energy & Environmental Science 12, no. 12 (2024): 4090-4103.

[33]

D. Chen, M. Lu, D. Cai, H. Yang, and W. Han, “Recent Advances in Energy Storage Mechanism of Aqueous Zinc-Ion Batteries,” Journal of Energy Chemistry 54 (2021): 712-726.

[34]

K. Feng, D. Wang, and Y. Yu, “Progress and Prospect of Zn Anode Modification in Aqueous Zinc-Ion Batteries: Experimental and Theoretical Aspects,” Molecules 28, no. 6 (2023): 2721.

[35]

M. Li, Z. Li, X. Wang, et al., “Comprehensive Understanding of the Roles of Water Molecules in Aqueous Zn-Ion Batteries: From Electrolytes to Electrode Materials,” Energy & Environmental Science 14, no. 7 (2021): 3796-3839.

[36]

Y. Zhao, C. Yang, and Y. Yu, “A Review on Covalent Organic Frameworks for Rechargeable Zinc-Ion Batteries,” Chinese Chemical Letters 35, no. 7 (2024): 108865.

[37]

G. Li, L. Sun, S. Zhang, et al., “Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects,” Advanced Functional Materials 34, no. 5 (2023): 2301291.

[38]

X. Wang, Z. Zhang, B. Xi, et al., “Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries,” ACS Nano 15, no. 6 (2021): 9244-9272.

[39]

P. Li, Y. Wang, Q. Xiong, et al., “Manipulating Coulombic Efficiency of Cathodes in Aqueous Zinc Batteries by Anion Chemistry,” Angewandte Chemie International Edition 62, no. 23 (2023): e202303292.

[40]

L. Fan, X. Guo, X. Hang, and H. Pang, “Synthesis of Truncated Octahedral Zinc-Doped Manganese Hexacyanoferrates and Low-Temperature Calcination Activation for Lithium-Ion Battery,” Journal of Colloid and Interface Science 607 (2022): 1898-1907.

[41]

J. Chen, J. Ma, B. Liu, et al., “Artificial Phosphate Solid Electrolyte Interphase Enables Stable MnO2 Cathode for Zinc Ion Batteries,” Composites Communications 38 (2023): 101524.

[42]

R. Guo, Y. Yang, C. Zhao, et al., “The Role of High-Entropy Materials in Lithium-Based Rechargeable Batteries,” Advanced Functional Materials 34, no. 18 (2023): 2313168.

[43]

X. Fang, J. Y. Choi, M. Stodolka, H. T. B. Pham, and J. Park, “Advancing Electrically Conductive Metal-Organic Frameworks for Photocatalytic Energy Conversion,” Accounts of Chemical Research 57, no. 16 (2024): 2316-2325.

[44]

R. Saha, K. Gupta, and C. J. Gómez García, “Strategies to Improve Electrical Conductivity in Metal-Organic Frameworks: A Comparative Study,” Crystal Growth & Design 24, no. 5 (2024): 2235-2265.

[45]

M. Shaheen, M. Z. Iqbal, S. Siddique, S. Aftab, and S. M. Wabaidur, “Elucidating d-π Conjugated Isoreticular 2,3,6,7,10,11-Hexahydroxytriphenylene and Hexahydroxybenzene Based Metal Organic Frameworks for Battery-Supercapacitor Hybrids,” Materials Today Sustainability 23 (2023): 100415.

[46]

X. Lin, S. Lai, G. Fang, and X. Li, “Nickel(II) Cluster-Based Pillar-Layered Metal-Organic Frameworks for High-Performance Supercapacitors,” Inorganic Chemistry 61, no. 43 (2022): 17278-17288.

[47]

S. Takaishi, M. Hosoda, T. Kajiwara, et al., “Electroconductive Porous Coordination Polymer Cu[Cu(pdt)2] Composed of Donor and Acceptor Building Units,” Inorganic Chemistry 48, no. 19 (2009): 9048-9050.

[48]

M. Hmadeh, Z. Lu, Z. Liu, et al., “New Porous Crystals of Extended Metal-Catecholates,” Chemistry of Materials 24, no. 18 (2012): 3511-3513.

[49]

X. Lin, D. Song, T. Shao, et al., “A Multifunctional Biosensor via MXene Assisted by Conductive Metal-Organic Framework for Healthcare Monitoring,” Advanced Functional Materials 34, no. 11 (2024): 2311637.

[50]

J. Dong, K. Chi, Y. Zhao, and Y. Liu, “Vertical Conductive Metal-Organic Framework Single-Crystalline Nanowire Arrays for Efficient Electrocatalytic Hydrogen Evolution,” Small 20, no. 46 (2024): 2404808.

[51]

C. Liu, Y. Gu, C. Liu, et al., “Missing-Linker 2D Conductive Metal Organic Frameworks for Rapid Gas Detection,” ACS Sensors 6, no. 2 (2021): 429-438.

[52]

T. Guo, Y. Ding, C. Xu, et al., “High Crystallinity 2D π-d Conjugated Conductive Metal-Organic Framework for Boosting Polysulfide Conversion in Lithium-Sulfur Batteries,” Advanced Science 10, no. 27 (2023): 2302518.

[53]

H. Dai, Y. Xu, Y. Han, et al., “Conductive MOF on ZIF-Derived Carbon Fibers as Superior Anode in Sodium-Ion Battery,” ACS Applied Materials & Interfaces 15, no. 24 (2023): 29170-29177.

[54]

X. Sun, X. Yan, K. Song, et al., “A Pyrazine-Based 2D Conductive Metal-Organic Framework for Efficient Lithium Storage,” Chinese Journal of Chemistry 41, no. 14 (2023): 1691-1696.

[55]

X. Deng, S. L. Zheng, Y. H. Zhong, J. Hu, L. H. Chung, and J. He, “Conductive MOFs Based on Thiol-Functionalized Linkers: Challenges, Opportunities, and Recent Advances,” Coordination Chemistry Reviews 450 (2022): 214235.

[56]

G. Zhang, L. Jin, R. Zhang, Y. Bai, R. Zhu, and H. Pang, “Recent Advances in the Development of Electronically and Ionically Conductive Metal-Organic Frameworks,” Coordination Chemistry Reviews 439 (2021): 213915.

[57]

X. Wang, R. A. Borse, G. Wang, et al., “Two-Dimensional Conductive Metal-Organic Frameworks Electrocatalyst: Design Principle and Energy Conversion Applications,” Materials Today Energy 44 (2024): 101652.

[58]

K. W. Nam, S. S. Park, R. dos Reis, et al., “Conductive 2D Metal-Organic Framework for High-Performance Cathodes in Aqueous Rechargeable Zinc Batteries,” Nature Communications 10 (2019): 4948.

[59]

Z. Zhu, Y. Zeng, Z. Pei, D. Luan, X. Wang, and X. W. Lou, “Bimetal-Organic Framework Nanoboxes Enable Accelerated Redox Kinetics and Polysulfide Trapping for Lithium-Sulfur Batteries,” Angewandte Chemie International Edition 62, no. 31 (2023): e202305828.

[60]

M. Qi, L. Cheng, H. G. Wang, F. Cui, Q. Yang, and L. Chen, “A Rhombic 2D Conjugated Metal-Organic Framework as Cathode for High-Performance Sodium-Ion Battery,” Advanced Materials 36, no. 26 (2024): 2401878.

[61]

M. Yang, Y. Wang, Y. F. Huang, et al., “A Conductive Cu-Based Metal-Organic Framework Ribbon With High-Density Redox-Active Centers as Cathode for Stable High Capacity Lithium-Ion Batteries,” Angewandte Chemie International Edition 64, no. 10 (2025): e202421008.

[62]

Z. Sun, L. Sun, S. W. Koh, et al., “Photovoltaic-Powered Supercapacitors for Driving Overall Water Splitting: A Dual-Modulated 3D Architecture,” Carbon Energy 4, no. 6 (2022): 1262-1273.

[63]

H. Ding, Z. Chen, H. Li, et al., “Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS Toward Low-Temperature Lithium-Sulfur Batteries,” Nano Letters 24, no. 47 (2024): 15118-15126.

[64]

L. Sun, C. H. Hendon, M. A. Minier, A. Walsh, and M. Dincă, “Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) Versus Mn2(DEBDC) (E = S, O),” Journal of the American Chemical Society 137, no. 19 (2015): 6164-6167.

[65]

L. Sun, T. Miyakai, S. Seki, and M. Dincă, “Mn2(2,5-Disulfhydrylbenzene-1,4-Dicarboxylate): A Microporous Metal-Organic Framework With Infinite (−Mn-S−)∞Chains and High Intrinsic Charge Mobility,” Journal of the American Chemical Society 135, no. 22 (2013): 8185-8188.

[66]

J. Liu, Y. Zhou, Z. Xie, et al., “Conjugated Copper-Catecholate Framework Electrodes for Efficient Energy Storage,” Angewandte Chemie International Edition 59, no. 3 (2020): 1081-1086.

[67]

L. Sun, S. S. Park, D. Sheberla, and M. Dinca. “Measuring and Reporting Electrical Conductivity in Metal-Organic Frameworks: Cd2(TTFTB) as a Case Study,” Journal of the American Chemical Society 138, no. 44 (2016): 14772-14782.

[68]

T. C. Narayan, T. Miyakai, S. Seki, and M. Dincă, “High Charge Mobility in a Tetrathiafulvalene-Based Microporous Metal-Organic Framework,” Journal of the American Chemical Society 134, no. 31 (2012): 12932-12935.

[69]

Y. Chen, M. Tang, Y. Wu, et al., “A One-Dimensional π-d Conjugated Coordination Polymer for Sodium Storage With Catalytic Activity in Negishi Coupling,” Angewandte Chemie International Edition 58, no. 41 (2019): 14731-14739.

[70]

S. Shang, C. Du, Y. Liu, et al., “A One-Dimensional Conductive Metal-Organic Framework With Extended π-d Conjugated Nanoribbon Layers,” Nature Communications 13 (2022): 7599.

[71]

Y. Kumar, T. H. Kim, I. Subiyanto, et al., “Redox-Active Conductive Metal-Organic Framework With High Lithium Capacities at Low Temperatures,” Journal of Materials Chemistry A 12, no. 12 (2024): 21732-21743.

[72]

Z. Wu, D. Adekoya, X. Huang, et al., “Highly Conductive Two-Dimensional Metal-Organic Frameworks for Resilient Lithium Storage With Superb Rate Capability,” ACS Nano 14, no. 9 (2020): 12016-12026.

[73]

Y. Cui, J. Yan, Z. Chen, et al., “[Cu3(C6Se6)]n: The First Highly Conductive 2D π-d Conjugated Coordination Polymer Based on Benzenehexaselenolate,” Advanced Science 6, no. 9 (2019): 1802235.

[74]

J. H. Dou, L. Sun, Y. Ge, et al., “Signature of Metallic Behavior in the Metal-Organic Frameworks M3(Hexaiminobenzene)2 (M=Ni, Cu),” Journal of the American Chemical Society 139, no. 39 (2017): 13608-13611.

[75]

T. Berry, J. R. Morey, K. E. Arpino, et al., “Structural, Thermodynamic, and Transport Properties of the Small-Gap Two-Dimensional Metal-Organic Kagomé Materials Cu3(hexaiminobenzene)2 and Ni3(Hexaiminobenzene)2,” Inorganic Chemistry 61, no. 17 (2022): 6480-6487.

[76]

A. J. Clough, N. M. Orchanian, J. M. Skelton, et al., “Room Temperature Metallic Conductivity in a Metal-Organic Framework Induced by Oxidation,” Journal of the American Chemical Society 141, no. 41 (2019): 16323-16330.

[77]

D. Sheberla, L. Sun, M. A. Blood-Forsythe, et al., “High Electrical Conductivity in Ni3(2,3,6,7,10,11-Hexaiminotriphenylene)2, a Semiconducting Metal-Organic Graphene Analogue,” Journal of the American Chemical Society 136, no. 25 (2014): 8859-8862.

[78]

K. Jastrzembski, Y. Zhang, Y. Lu, et al., “Tunable Crystallinity and Electron Conduction in Wavy 2D Conjugated Metal-Organic Frameworks via Halogen Substitution,” Small 20, no. 17 (2023): 2306732.

[79]

R. Iqbal, M. S. Naeem, M. Ahmad, et al., “Co3(hexaamino dipyrazinoquinoxaline)2: Highly Conductive and Robust Two-Dimensional Aza-Based Cobalt Metal-Organic Framework as an Efficient Electrocatalyst for Acidic Oxygen Evolution,” Journal of Power Sources 594 (2024): 233903.

[80]

X. Su, Z. Zhong, X. Yan, et al., “De Novo Design and Facile Synthesis of Highly Crystalline 2D Conductive Metal-Organic Frameworks: A “Rotor-Stator” Strategy,” Journal of the American Chemical Society 146, no. 13 (2024): 9036-9044.

[81]

K. Fan, J. Li, Y. Xu, et al., “Single Crystals of a Highly Conductive Three-Dimensional Conjugated Coordination Polymer,” Journal of the American Chemical Society 145, no. 23 (2023): 12682-12690.

[82]

Q. Zhao, D. Zhu, X. Zhou, et al., “Conductive One-Dimensional Coordination Polymers With Tunable Selectivity for the Oxygen Reduction Reaction,” ACS Applied Materials & Interfaces 13, no. 44 (2021): 52960-52966.

[83]

Y. Huang, C. Fang, R. Zeng, et al., “In-Situ Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries,” ChemSusChem 10, no. 23 (2017): 4704-4708.

[84]

P. A. Albrecht, S. M. Rupf, M. Sellin, J. Schlögl, S. Riedel, and M. Malischewski, “Increasing the Oxidation Power of TCNQ by Coordination of B(C6F5)3,” Chemical Communications 58 (2022): 4958-4961.

[85]

J. Liu, Y. Zhou, G. Xing, et al., “2D Conductive Metal-Organic Framework With Anthraquinone Built-In Active Sites as Cathode for Aqueous Zinc Ion Battery,” Advanced Functional Materials 34 (2024): 2312636.

[86]

Z. Chang, M. Zhu, Z. Li, et al., “2D Conductive Metal-Organic Frameworks Based on Tetraoxa [8] Circulenes as Promising Cathode for Aqueous Zinc Ion Batteries,” Small 20, no. 31 (2024): 2400923.

[87]

H. Meng, Y. Han, C. Zhou, et al., “Conductive Metal-Organic Frameworks: Design, Synthesis, and Applications,” Small Methods 4, no. 10 (2020): 2000396.

[88]

L. Guo, J. Sun, J. Wei, Y. Liu, L. Hou, and C. Yuan, “Conductive Metal-Organic Frameworks: Recent Advances in Electrochemical Energy-Related Applications and Perspectives,” Carbon Energy 2, no. 2 (2020): 203-222.

[89]

Y. Zhao, Y. Han, and Y. Yu, “Design of Electronic Conductive Covalent-Organic Frameworks and Their Opportunities in Lithium Batteries,” Chemical Engineering Journal 497 (2024): 154997.

[90]

W. H. Li, W. H. Deng, G. E. Wang, and G. Xu, “Conductive MOFs,” EnergyChem 2 (2020): 100029.

[91]

J. Chen, Z. Liu, K. Feng, F. Deng, and Y. Yu, “Electrostatically Connected Fe2O3@Ni-MOF Nanosheet Array Heterojunction for High-Performance Light-Assisted Zinc-Air Batteries,” Composites, Part B: Engineering 289 (2025): 111936.

[92]

J. Chen, J. Luo, Y. Xiang, and Y. Yu, “Light-Assisted Rechargeable Zinc-Air Battery: Mechanism, Progress, and Prospects,” Journal of Energy Chemistry 91 (2024): 178-193.

[93]

F. Deng, Y. Zhang, and Y. Yu, “Conductive Metal-Organic Frameworks for Rechargeable Lithium Batteries,” Batteries 9, no. 2 (2023): 109.

[94]

T. Wang, J. Lei, Y. Wang, et al., “Approaches to Enhancing Electrical Conductivity of Pristine Metal-Organic Frameworks for Supercapacitor Applications,” Small 18, no. 32 (2022): 2203307.

[95]

X. Song, J. Liu, T. Zhang, and L. Chen, “2D Conductive Metal-Organic Frameworks for Electronics and Spintronics,” Science China Chemistry 63 (2020): 1391-1401.

[96]

S. O. Ajayi, T. H. Dolla, L. L. Sikeyi, et al., “Current Update and Prospects in the Development of Conductive Metal-Organic Framework Electrodes for Lithium-Based Batteries,” Materials Today Sustainability 27 (2024): 100899.

[97]

C. Li, L. Zhang, J. Chen, et al., “Recent Development and Applications of Electrical Conductive MOFs,” Nanoscale 13, no. 2 (2021): 485-509.

[98]

L. Sun, M. G. Campbell, and M. Dincă, “Electrically Conductive Porous Metal-Organic Frameworks,” Angewandte Chemie International Edition 55, no. 11 (2016): 3566-3579.

[99]

X. Deng, J. Y. Hu, J. Luo, W. M. Liao, and J. He, “Conductive Metal-Organic Frameworks: Mechanisms, Design Strategies and Recent Advances,” Topics in Current Chemistry 378 (2020): 27.

[100]

S. Shoaib Ahmad Shah, M. Altaf Nazir, A. Mahmood, et al., “Synthesis of Electrical Conductive Metal Organic Frameworks for Electrochemical Applications,” Chemical Record 24, no. 1 (2023): e202300141.

[101]

M. Yang, X. Zeng, M. Xie, et al., “Conductive Metal-Organic Framework With Superior Redox Activity as a Stable High-Capacity Anode for High-Temperature K‑Ion Batteries,” Journal of the American Chemical Society 146, no. 10 (2024): 6753-6762.

[102]

B. Zhu, D. Wen, Z. Liang, and R. Zou, “Conductive Metal-Organic Frameworks for Electrochemical Energy Conversion and Storage,” Coordination Chemistry Reviews 446 (2021): 214119.

[103]

G. Xu, C. Zhu, and G. Gao, “Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges,” Small 18, no. 44 (2022): 2203140.

[104]

A. Nath, K. S. Asha, and S. Mandal, “Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications,” Chemistry - A European Journal 27, no. 45 (2021): 11482-11538.

[105]

Y. Kobayashi, B. Jacobs, M. D. Allendorf, and J. R. Long, “Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal-Organic Framework,” Chemistry of Materials 22, no. 14 (2010): 4120-4122.

[106]

F. Zanca, L. T. Glasby, S. Chong, et al., “Computational Techniques for Characterisation of Electrically Conductive MOFs: Quantum Calculations and Machine Learning Approaches,” Journal of Materials Chemistry C 9, no. 9 (2021): 13584-13599.

[107]

M. Jeon, M. Kim, J. S. Lee, et al., “Computational Prediction of Stacking Mode in Conductive Two Dimensional Metal-Organic Frameworks: An Exploration of Chemical and Electrical Property Changes,” ACS Sensors 8, no. 8 (2023): 3068-3075.

[108]

Z. Zhang, Y. Shi, and F. A. Shakib, “Machine Learning Prediction of Thermodynamic Stability and Electronic Properties of 2D Layered Conductive Metal-Organic Frameworks,” ChemRxiv, https://doi.org/10.26434/chemrxiv-2024-0mkw8.

[109]

J. Lin, H. Zhang, M. Asadi, et al., “Machine Learning-Driven Discovery and Structure-Activity Relationship Analysis of Conductive Metal-Organic Frameworks,” Chemistry of Materials 36, no. 11 (2024): 5436-5445.

[110]

M. Wang, R. Dong, and X. Feng, “Two-Dimensional Conjugated Metal-Organic Frameworks (2Dc-MOFs): Chemistry and Function for MOFtronics,” Chemical Society Reviews 50, no. 4 (2021): 2764-2793.

[111]

J. Liu, X. Song, T. Zhang, S. Liu, H. Wen, and L. Chen, “2D Conductive Metal-Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage,” Angewandte Chemie International Edition 60, no. 11 (2021): 5612-5624.

[112]

C. Wu, P. Geng, G. Zhang, X. Li, and H. Pang, “Synthesis of Conductive MOFs and Their Electrochemical Application,” Small 20, no. 17 (2023): 2308264.

[113]

T. Kambe, R. Sakamoto, T. Kusamoto, et al., “Redox Control and High Conductivity of Nickel Bis(Dithiolene) Complex π-Nanosheet: A Potential Organic Two-Dimensional Topological Insulator,” Journal of the American Chemical Society 136, no. 41 (2014): 14357-14360.

[114]

T. Hong, C. Lee, Y. Bak, et al., “On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite,” Small 20, no. 18 (2024): e2309469.

[115]

J. Sun, L. Guo, X. Sun, et al., “Conductive Co-Based Metal-Organic Framework Nanowires: A Competitive High-Rate Anode Towards Advanced Li-Ion Capacitors,” Journal of Materials Chemistry A 7, no. 43 (2019): 24788-24791.

[116]

P. Mao, H. Fan, Y. Liu, et al., “Conductive Co-Based Metal Organic Framework Nanostructures for Excellent Potassium- and Lithium-Ion Storage: Kinetics and Mechanism Studies,” Sustainable Energy & Fuels 6, no. 17 (2022): 4075-4084.

[117]

S. Chen, H. Zhang, X. Li, et al., “Negative Electrodes for Supercapacitors With Good Performance Using Conductive Bismuth-Catecholate Metal-Organic Frameworks,” Dalton Transactions 52, no. 15 (2023): 4826-4834.

[118]

H. R. Park, G. Jang, J. S. Byun, et al., “Hierarchically Structured Conductive Lanthanide Metal Organic Framework Nanorods for Ultrastable Flexible Magnesium Ion Capacitors,” Advanced Functional Materials 35, no. 11 (2025): 2417288.

[119]

H. Zhang, L. Cheng, K. Li, Y. Wang, and Z. Wu, “Exploring CO2 Electrochemical Reduction Mechanism on Two-Dimensional Metal 2,3,6,7,10,11-Triphenylenehexathiolate Frameworks Using Density Functional Theory,” Molecular Physics 120, no. 14 (2022): e2064785.

[120]

Z. Chen, Y. Cui, L. Liang, et al., “Flexible Film and Thermoelectric Device of Single-Walled Carbon Nanotube@Conductive Metal-Organic Framework Composite,” Materials Today Nano 20 (2022): 100276.

[121]

A. J. Clough, J. M. Skelton, C. A. Downes, et al., “Metallic Conductivity in a Two-Dimensional Cobalt Dithiolene Metal-Organic Framework,” Journal of the American Chemical Society 139, no. 31 (2017): 10863-10867.

[122]

D. Su, H. Zhang, J. Zhang, and Y. Zhao, “Design and Synthesis Strategy of MXenes-Based Anode Materials for Sodium-Ion Batteries and Progress of First-Principles Research,” Molecules 28, no. 17 (2023): 6292.

[123]

N. Kumar, S. B. Kim, S. Y. Lee, and S. J. Park, “Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives,” Nanomaterials 12, no. 20 (2022): 3708.

[124]

Y. Zhang, Y. Han, F. Deng, et al., “Enhancement of the Performance of Ge-Air Batteries Under High Temperatures Using Conductive MOF-Modified Ge Anodes,” Carbon Energy 6, no. 11 (2024): e580.

[125]

Y. Zhang, T. Qiu, F. Jiang, et al., “Spindle-Like Ni3(HITP)2 MOFs: Synthesis and Li+ Storage Mechanism,” Applied Surface Science 556 (2021): 149818.

[126]

P. Miry, V. Safarifard, M. Moradi, and A. Massoudi, “Impact of Linker/Metal Tuning on the Performance of Two-Dimensional Ni3(HITP)2 MOF-Based Mg Ion Batteries,” FlatChem 34 (2022): 100382.

[127]

D. Cai, M. Lu, L. Li, et al., “A Highly Conductive MOF of Graphene Analogue Ni3(HITP)2 as a Sulfur Host for High-Performance Lithium-Sulfur Batteries,” Small 15, no. 44 (2019): 1902605.

[128]

D. K. Nguyen, I. M. Schepisi, and F. Z. Amir, “Extraordinary Cycling Stability of Ni3(HITP)2 Supercapacitors Fabricated by Electrophoretic Deposition: Cycling at 100,000 Cycles,” Chemical Engineering Journal 378 (2019): 122150.

[129]

W. Zhao, T. Chen, W. Wang, et al., “Conductive Ni3(HITP)2 MOFs Thin Films for Flexible Transparent Supercapacitors With High Rate Capability,” Science Bulletin 65, no. 21 (2020): 1803-1811.

[130]

M. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, and M. Dincă, “Cu3(Hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing,” Angewandte Chemie International Edition 54, no. 14 (2015): 4349-4352.

[131]

J. W. Gittins, C. J. Balhatchet, Y. Chen, et al., “Insights Into the Electric Double-Layer Capacitance of Two-Dimensional Electrically Conductive Metal-Organic Frameworks,” Journal of Materials Chemistry A 9 (2021): 16006-16015.

[132]

J. Zhang, G. Zhou, H. I. Un, et al., “Wavy Two-Dimensional Conjugated Metal-Organic Framework With Metallic Charge Transport,” Journal of the American Chemical Society 145, no. 43 (2023): 23630-23638.

[133]

M. I. Schönherr, P. I. Scheurle, L. Frey, et al., “An Electrically Conducting 3D Coronene-Based Metal-Organic Framework,” Journal of Materials Chemistry A 12, no. 12 (2024): 10044-10049.

[134]

L. Jiao, J. Y. R. Seow, W. S. Skinner, Z. U. Wang, and H. L. Jiang, “Metal-Organic Frameworks: Structures and Functional Applications,” Materials Today 27 (2019): 43-68.

[135]

M. Ding, X. Cai, and H. L. Jiang, “Improving MOF Stability: Approaches and Applications,” Chemical Science 10, no. 44 (2019): 10209-10230.

[136]

D. Wang, Y. Zhang, J. Gao, G. Ge, and C. Li, “A Polyhedron-Based Heterometallic MOF Constructed by HSAB Theory and SBB Strategy: Synthesis, Structure, and Adsorption Properties,” Crystal Growth & Design 19, no. 8 (2019): 4571-4578.

[137]

M. Yang, Y. Xie, and D. Zhu, “Synthetic Strategies of Chemically Stable Metal-Organic Frameworks,” Advanced Materials 35 (2023): 683-698.

[138]

C. L. Chen, C. Wang, X. Y. Zheng, et al., “Conductive Lanthanide Metal-Organic Frameworks With Exceptionally High Stability,” Journal of the American Chemical Society 145, no. 31 (2023): 16983-16987.

[139]

T. Yue, C. Xia, X. Liu, Z. Wang, K. Qi, and B. Y. Xia, “Design and Synthesis of Conductive Metal-Organic Frameworks and Their Composites for Supercapacitors,” ChemElectroChem 8, no. 6 (2021): 1021-1034.

[140]

M. Aust, M. I. Schönherr, D. P. Halter, et al., “Benzene-1,4-Di(Dithiocarboxylate) Linker-Based Coordination Polymers of Mn2+, Zn2+, and Mixed-Valence Fe2+/3+,” Inorganic Chemistry 63, no. 1 (2024): 129-140.

[141]

X. F. Cheng, J. Li, X. Hou, et al., “One-Dimensional π-d Conjugated Coordination Polymers: Synthesis and Their Improved Memory Performance,” Science China Chemistry 62 (2019): 753-760.

[142]

S. S. Park, E. R. Hontz, L. Sun, et al., “Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal-Organic Frameworks,” Journal of the American Chemical Society 137, no. 5 (2015): 1774-1777.

[143]

Z. Liu, X. Zhang, J. Luo, and Y. Yu, “Application of Metal-Organic Frameworks to the Anode Interface in Metal Batteries,” Chinese Chemical Letters 35, no. 11 (2024): 109500.

[144]

Q. Zhang, S. Jiang, T. Lv, Y. Peng, and H. Pang, “Application of Conductive MOF in Zinc-Based Batteries,” Advanced Materials 35, no. 48 (2023): 2305532.

[145]

S. Zu, H. Zhang, T. Zhang, M. Zhang, and L. Song, “Ni-Rh-Based Bimetallic Conductive MOF as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction,” Frontiers in Chemistry 11 (2023): 1242672.

[146]

P. Di Matteo, R. Petrucci, and A. Curulli, “Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)Sensing Area for Biomedical and Healthcare Applications,” Molecules 29, no. 1 (2024): 172.

[147]

L. Ndlwana, N. Raleie, K. M. Dimpe, et al., “Sustainable Hydrothermal and Solvothermal Synthesis of Advanced Carbon Materials in Multidimensional Applications: A Review,” Materials 14, no. 17 (2021): 5094.

[148]

S. Xie, Z. Zhou, X. Zhang, and J. Fransaer, “Cathodic Deposition of MOF Films: Mechanism and Applications,” Chemical Society Reviews 52, no. 13 (2023): 4292-4312.

[149]

S. Q. Zheng, S. S. Lim, C. Y. Foo, et al., “Solvothermal Synthesis of Nanostructured Nickel-Based Metal-Organic Frameworks (Ni-MOFs) With Enhanced Electrochemical Performance for Symmetric Supercapacitors,” Journal of Materials Science 58 (2023): 11894-11913.

[150]

X. Zhang, F. Deng, Z. Liu, and Y. Yu, “Long-Lifetime Aqueous Si-Air Batteries Prepared by Growing Multi-Dimensionally Tunable ZIF-8 Crystals on Si Anodes,” Journal of Colloid and Interface Science 674 (2024): 722-734.

[151]

P. Duan, W. Dai, Z. Wang, et al., “Conductive MOFs: Synthesis and Applications in Supercapacitors and Batteries,” Batteries & Supercaps 7, no. 3 (2024): e202300536.

[152]

J. Łuczak, M. Kroczewska, M. Baluk, J. Sowik, P. Mazierski, and A. Zaleska-Medynska, “Morphology Control Through the Synthesis of Metal-Organic Frameworks,” Advances in Colloid and Interface Science 314 (2023): 102864.

[153]

S. Tao, J. Wang, and J. Zhang, “Conductive Metal-Organic Frameworks and Their Electrocatalysis Applications,” ACS Nano 19, no. 10 (2025): 9484-9512.

[154]

Z. Sang, J. Liu, X. Zhang, L. Yin, F. Hou, and J. Liang, “One-Dimensional π-d Conjugated Conductive Metal-Organic Framework With Dual Redox Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries,” ACS Nano 17, no. 3 (2023): 3077-3087.

[155]

J. Xue, Z. Sun, B. Sun, et al., “Covalent Organic Framework-Based Materials for Advanced Lithium Metal Batteries,” ACS Nano 18, no. 27 (2024): 17439-17468.

[156]

B. He, Q. Zhang, Z. Pan, et al., “Freestanding Metal-Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion,” Chemical Reviews 122, no. 11 (2022): 10087-10125.

[157]

L. Zhang, X. Qin, S. Zhao, et al., “Advanced Matrixes for Binder-Free Nanostructured Electrodes in Lithium-Ion Batteries,” Advanced Materials 32, no. 24 (2020): 1908445.

[158]

W. Liu, W. Liu, Y. Jiang, et al., “Binder-Free Electrodes for Advanced Potassium-Ion Batteries: A Review,” Chinese Chemical Letters 32, no. 2020 (2021): 1299-1308.

[159]

B. He, Q. Zhang, P. Man, et al., “Self-Sacrificed Synthesis of Conductive Vanadium-Based Metal-Organic Framework Nanowire-Bundle Arrays as Binder-Free Cathodes for High-Rate and High-Energy-Density Wearable Zn-Ion Batteries,” Nano Energy 64 (2019): 103935.

[160]

Q. Lu, M. Zhao, J. Chen, et al., “In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metal-Organic Framework Nanosheets,” Small 12, no. 34 (2016): 4669-4674.

[161]

Z. Zhao, J. Ding, R. Zhu, and H. Pang, “The Synthesis and Electrochemical Applications of Core-Shell MOFs and Their Derivatives,” Journal of Materials Chemistry A 7, no. 26 (2019): 15519-15540.

[162]

X. Chen, Y. Lu, J. Dong, et al., “Ultrafast In Situ Synthesis of Large-Area Conductive Metal-Organic Frameworks on Substrates for Flexible Chemiresistive Sensing,” ACS Applied Materials & Interfaces 12, no. 51 (2020): 57235-57244.

[163]

X. Yin, Y. Li, W. Cai, et al., “In-Situ Synthesis of Cu-Based Conductive Metal Organic Frameworks on Graphene Layers for High-Performance Lithium and Potassium Ion Batteries,” Applied Surface Science 624 (2023): 157124.

[164]

H. Zhang, L. Yang, X. Li, et al., “Morphology Regulation of Conductive Metal-Organic Frameworks In Situ Grown on Graphene Oxide for High-Performance Supercapacitors,” Dalton Transactions 53, no. 10 (2024): 4680-4688.

[165]

C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang, and H. Pang, “In Situ Growth of Three-Dimensional MXene/Metal-Organic Framework Composites for High-Performance Supercapacitors,” Angewandte Chemie International Edition 61, no. 11 (2022): e202116282.

[166]

X. Zhao, K. Tao, and L. Han, “Self-Supported Metal-Organic Framework-Based Nanostructures as Binder-Free Electrodes for Supercapacitors,” Nanoscale 14, no. 6 (2022): 2155-2166.

[167]

Y. Fan, Y. Zhang, J. Wu, et al., “Free-Standing Conductive Nickel Metal-Organic Framework Nanowires as Bifunctional Electrodes for Wearable Pressure Sensors and Ni-Zn Batteries,” iScience 26, no. 8 (2023): 107397.

[168]

D. Ma, X. Huang, Y. Zhang, L. Wang, and B. Wang, “Metal-Organic Frameworks: Synthetic Methods for Industrial Production,” Nano Research 16 (2023): 7906-7925.

[169]

Y. Yang, B. Sun, Z. Sun, et al., “Recent Advances and Strategies of Metal Phosphides for Accelerating Polysulfide Redox and Regulating Li Plating,” Coordination Chemistry Reviews 510 (2024): 215836.

[170]

Y. Wang, J. Song, and W. Y. Wong, “Constructing 2D Sandwich-Like MOF/MXene Heterostructures for Durable and Fast Aqueous Zinc-Ion Batteries,” Angewandte Chemie International Edition 62, no. 8 (2022): e202218343.

[171]

J. Guo, J. Liu, W. Ma, et al., “Vanadium Oxide Intercalated With Conductive Metal-Organic Frameworks With Dual Energy-Storage Mechanism for High Capacity and High-Rate Capability Zn Ion Storage,” Advanced Functional Materials 33, no. 41 (2023): 2302659.

[172]

C. Li, S. Jin, L. A. Archer, and L. F. Nazar, “Toward Practical Aqueous Zinc-Ion Batteries for Electrochemical Energy Storage,” Joule 6, no. 8 (2022): 1733-1738.

[173]

W. Shu, J. Li, G. Zhang, J. Meng, X. Wang, and L. Mai, “Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium‑/Potassium‑Ion Batteries,” Nano-Micro Letters 16 (2024): 128.

[174]

Z. Meng and K. A. Mirica, “Two-Dimensional d-π Conjugated Metal-Organic Framework Based on Hexahydroxytrinaphthylene,” Nano Research 14, no. 2 (2021): 369-375.

[175]

S. Bi, H. Banda, M. Chen, et al., “Molecular Understanding of Charge Storage and Charging Dynamics in Supercapacitors With MOF Electrodes and Ionic Liquid Electrolytes,” Nature Materials 19 (2020): 552-558.

[176]

J. Yan, Y. Cui, M. Xie, G. Z. Yang, D. S. Bin, and D. Li, “Immobilizing Redox-Active Tricycloquinazoline Into a 2D Conductive Metal-Organic Framework for Lithium Storage,” Angewandte Chemie International Edition 60, no. 46 (2021): 24467-24472.

[177]

L. Lin, Q. Zhang, Y. Ni, et al., “Rational Design and Synthesis of Two-Dimensional Conjugated Metal-Organic Polymers for Electrocatalysis Applications,” Chem 8, no. 7 (2022): 1822-1854.

[178]

Z. Chen, Y. Cui, Y. Jin, et al., “Nanorods of a Novel Highly Conductive 2D Metal-Organic Framework Based on Perthiolated Coronene for Thermoelectric Conversion,” Journal of Materials Chemistry C 8, no. 8 (2020): 8199-8205.

[179]

J. Nyakuchena, S. Ostresh, D. Streater, et al., “Direct Evidence of Photoinduced Charge Transport Mechanism in 2D Conductive Metal Organic Frameworks,” Journal of the American Chemical Society 142, no. 50 (2020): 21050-21058.

[180]

Z. Luo, L. Liu, J. Ning, et al., “A Microporous Covalent-Organic Framework With Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries,” Angewandte Chemie International Edition 57, no. 30 (2018): 9443-9446.

[181]

J. Park, A. C. Hinckley, Z. Huang, et al., “Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal-Organic Framework,” Journal of the American Chemical Society 140, no. 44 (2018): 14533-14537.

[182]

H. Huang, Y. Zhao, Y. Bai, F. Li, Y. Zhang, and Y. Chen, “Conductive Metal-Organic Frameworks With Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction,” Advanced Science 7, no. 9 (2020): 2000012.

[183]

X. Sun, K. H. Wu, R. Sakamoto, et al., “Bis(Aminothiolato)Nickel Nanosheet as a Redox Switch for Conductivity and an Electrocatalyst for the Hydrogen Evolution Reaction,” Chemical Science 8, no. 12 (2017): 8078-8085.

[184]

J. M. Seo, H. J. Noh, H. Y. Jeong, and J. B. Baek, “Converting Unstable Imine-Linked Network Into Stable Aromatic Benzoxazole-Linked One via Post-Oxidative Cyclization,” Journal of the American Chemical Society 141, no. 30 (2019): 11786-11790.

[185]

H. T. B. Pham, J. Y. Choi, M. Stodolka, and J. Park, “Maximizing the Potential of Electrically Conductive MOFs,” Accounts of Chemical Research 57, no. 4 (2024): 580-589.

[186]

A. J. Clough, J. W. Yoo, M. H. Mecklenburg, and S. C. Marinescu, “Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution From Water,” Journal of the American Chemical Society 137, no. 1 (2015): 118-121.

[187]

Y. Cui, J. Yan, Z. Chen, et al., “Synthetic Route to a Triphenylenehexaselenol-Based Metal Organic Framework With Semi-Conductive and Glassy Magnetic Properties,” iScience 23 (2020): 100812.

[188]

H. Nagatomi, N. Yanai, T. Yamada, K. Shiraishi, and N. Kimizuka, “Synthesis and Electric Properties of a Two-Dimensional Metal Organic Framework Based on Phthalocyanine,” Chemistry - A European Journal 24, no. 8 (2018): 1806-1810.

[189]

M. Wang, H. Shi, P. Zhang, et al., “Phthalocyanine-Based 2D Conjugated Metal-Organic Framework Nanosheets for High-Performance Micro-Supercapacitors,” Advanced Functional Materials 30, no. 30 (2020): 2002664.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

246

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/