Tailoring an Fe–Ov–Ce–Triggered Phase-Reversible Oxygen Carrier for Intensified Chemical Looping CO2 Splitting

Zhao Sun , Kun Lei , Louise R. Smith , Nicholas F. Dummer , Richard J. Lewis , Haifeng Qi , Kieran J. Aggett , Stuart H. Taylor , Zhiqiang Sun , Graham J. Hutchings

Carbon Energy ›› 2025, Vol. 7 ›› Issue (9) : e70011

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (9) : e70011 DOI: 10.1002/cey2.70011
RESEARCH ARTICLE

Tailoring an Fe–Ov–Ce–Triggered Phase-Reversible Oxygen Carrier for Intensified Chemical Looping CO2 Splitting

Author information +
History +
PDF

Abstract

Advanced oxygen carrier plays a pivotal role in various chemical looping processes, such as CO2 splitting. However, oxygen carriers have been restricted by deactivation and inferior oxygen transferability at low temperatures. Herein, we design an Fe–Ov–Ce–triggered phase-reversible CeO2−x·Fe·CaO ↔ CeO2·Ca2Fe2O5 oxygen carrier with strong electron-donating ability, which activates CO2 at low temperatures and promotes oxygen transformation. Results reveal that the maximum CO2 conversion and CO yield obtained with 50 mol% CeO2−x·Fe·CaO are, respectively, 426% and 53.6 times higher than those of Fe·CaO at 700°C. This unique multiphase material also retains exceptional redox durability, with no obvious deactivation after 100 splitting cycles. The addition of Ce promotes the formation of the Fe–Ov–Ce structure, which acts as an activator, triggers CO2 splitting, and lowers the energy barrier of C═O dissociation. The metallic Fe plays a role in consuming O2−lattice transformed from Fe–Ov–Ce, whereas CaO acts as a structure promoter that enables phase-reversible Fe0 ↔ Fe3+ looping.

Keywords

chemical looping / CO2 splitting / electron-donating / phase-reversible oxygen carrier

Cite this article

Download citation ▾
Zhao Sun, Kun Lei, Louise R. Smith, Nicholas F. Dummer, Richard J. Lewis, Haifeng Qi, Kieran J. Aggett, Stuart H. Taylor, Zhiqiang Sun, Graham J. Hutchings. Tailoring an Fe–Ov–Ce–Triggered Phase-Reversible Oxygen Carrier for Intensified Chemical Looping CO2 Splitting. Carbon Energy, 2025, 7(9): e70011 DOI:10.1002/cey2.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Chen, S. Meng, R. Liu, et al., “Plasma-Catalytic CO2 Hydrogenation to Methanol Over CuO-MgO/Beta Catalyst With High Selectivity,” Applied Catalysis B: Environmental 342 (2024): 123422.

[2]

S. Du, P. Yang, M. Li, L. Tao, S. Wang, and Z. Q. Liu, “Catalysts and Electrolyzers for the Electrochemical CO2 Reduction Reaction: From Laboratory to Industrial Applications,” Chemical Communications 60, no. 10 (2024): 1207-1221.

[3]

R. P. Ye, J. Ding, W. Gong, et al., “CO2 Hydrogenation to High-Value Products Via Heterogeneous Catalysis,” Nature Communications 10 (2019): 5698.

[4]

J. Zhu, P. Wang, X. Zhang, et al., “Dynamic Structural Evolution of Iron Catalysts Involving Competitive Oxidation and Carburization during CO2 Hydrogenation,” Science Advances 8, no. 5 (2022): eabm3629.

[5]

J. Liang, J. Liu, L. Guo, et al., “CO2 Hydrogenation Over Fe-Co Bimetallic Catalysts With Tunable Selectivity Through a Graphene Fencing Approach,” Nature Communications 15, no. 1 (2024): 512.

[6]

C. Hepburn, E. Adlen, J. Beddington, et al., “The Technological and Economic Prospects for CO2 Utilization and Removal,” Nature 575, no. 7781 (2019): 87-97.

[7]

T. Pinheiro Araújo, C. Mondelli, M. Agrachev, et al., “Flame-Made Ternary Pd-In2O3-ZrO2 Catalyst With Enhanced Oxygen Vacancy Generation for CO2 Hydrogenation to Methanol,” Nature Communications 13, no. 1 (2022): 5610.

[8]

Z. Sun, C. K. Russell, K. J. Whitty, et al., “Chemical Looping-Based Energy Transformation Via Lattice Oxygen Modulated Selective Oxidation,” Progress in Energy and Combustion Science 96 (2023): 101045.

[9]

X. Wu, Y. Guo, Y. Gu, et al., “In Operando-Formed Interface Between Silver and Perovskite Oxide for Efficient Electroreduction of Carbon Dioxide to Carbon Monoxide,” Carbon Energy 5, no. 4 (2023): e278.

[10]

M. Guan, N. Lu, X. Zhang, et al., “Engineering of Oxygen Vacancy and Bismuth Cluster Assisted Ultrathin Bi12O17Cl2 Nanosheets With Efficient and Selective Photoreduction of CO2 to CO,” Carbon Energy 6, no. 4 (2024): e420.

[11]

J. Zhang, Y. Wang, H. Wang, D. Zhong, and T. Lu, “Enhancing Photocatalytic Performance of Metal-Organic Frameworks for CO2 Reduction by a Bimetallic Strategy,” Chinese Chemical Letters 33, no. 4 (2022): 2065-2068.

[12]

S. Vijay, W. Ju, S. Brückner, S. C. Tsang, P. Strasser, and K. Chan, “Unified Mechanistic Understanding of CO2 Reduction to CO on Transition Metal and Single Atom Catalysts,” Nature Catalysis 4, no. 12 (2021): 1024-1031.

[13]

K. J. Noh, B. J. Park, Y. Wang, et al., “Tailoring Local Structures of Atomically Dispersed Copper Sites for Highly Selective CO2 Electroreduction,” Carbon Energy 6, no. 4 (2024): e419.

[14]

D. Song, Y. Lin, S. Fang, et al., “Unraveling the Atomic Interdiffusion Mechanism of NiFe2O4 Oxygen Carriers During Chemical Looping CO2 Conversion,” Carbon Energy 6, no. 8 (2024): e493.

[15]

W. C. Chueh, C. Falter, M. Abbott, et al., “High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria,” Science 330, no. 6012 (2010): 1797-1801.

[16]

C. Agrafiotis, M. Roeb, and C. Sattler, “A Review on Solar Thermal Syngas Production Via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles,” Renewable and Sustainable Energy Reviews 42, no. C (2015): 254-285.

[17]

W. Fang, C. Wang, Z. Liu, et al., “Physical Mixing of a Catalyst and a Hydrophobic Polymer Promotes CO Hydrogenation Through Dehydration,” Science 377, no. 6604 (2022): 406-410.

[18]

L. Lu, F. Qiu, H. Alhumade, H. Zhang, and A. Lei, “Tuning the Oxidative Mono- or Double-Carbonylation of Alkanes With CO by Choosing a Co or Cu Catalyst,” ACS Catalysis 12, no. 15 (2022): 9664-9669.

[19]

C. Dong, M. Marinova, K. B. Tayeb, et al., “Direct Photocatalytic Synthesis of Acetic Acid From Methane and CO at Ambient Temperature Using Water as Oxidant,” Journal of the American Chemical Society 145, no. 2 (2023): 1185-1193.

[20]

D. Marxer, P. Furler, M. Takacs, and A. Steinfeld, “Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency,” Energy & Environmental Science 10, no. 5 (2017): 1142-1149.

[21]

K. Gao, X. Liu, Q. Wang, et al., “Remarkable Solar Thermochemical CO2 Splitting Performances Based on Ce- and Al-Doped SrMnO3 Perovskites,” Sustainable Energy & Fuels 7, no. 4 (2023): 1027-1040.

[22]

M. Tou, R. Michalsky, and A. Steinfeld, “Solar-Driven Thermochemical Splitting of CO2 and in Situ Separation of CO and O2 Across a Ceria Redox Membrane Reactor,” Joule 1, no. 1 (2017): 146-154.

[23]

J. I. Makiura, T. Higo, Y. Kurosawa, et al., “Fast Oxygen Ion Migration in Cu-In-Oxide Bulk and Its Utilization for Effective CO2 Conversion at Lower Temperature,” Chemical Science 12, no. 6 (2021): 2108-2113.

[24]

A. Haeussler, S. Abanades, J. Jouannaux, and A. Julbe, “Demonstration of a Ceria Membrane Solar Reactor Promoted by Dual Perovskite Coatings for Continuous and Isothermal Redox Splitting of CO2 and H2O,” Journal of Membrane Science 634 (2021): 119387.

[25]

M. Wenzel, L. Rihko-Struckmann, and K. Sundmacher, “Thermodynamic Analysis and Optimization of RWGS Processes for Solar Syngas Production From CO2,” AIChE Journal 63, no. 1 (2017): 15-22.

[26]

Y. Kang, Y. Han, C. Wei, et al., “A Novel Carbon Cycle Process Assisted by Ni/La2O3 Catalyst for Enhanced Thermochemical CO2 Splitting,” Journal of Energy Chemistry 61 (2021): 297-303.

[27]

Y. Kim, H. S. Lim, H. S. Kim, M. Lee, J. W. Lee, and D. Kang, “Carbon Dioxide Splitting and Hydrogen Production Using a Chemical Looping Concept: A Review,” Journal of CO2 Utilization 63 (2022): 102139.

[28]

D. Maiti, B. J. Hare, Y. A. Daza, A. E. Ramos, J. N. Kuhn, and V. R. Bhethanabotla, “Earth Abundant Perovskite Oxides for Low Temperature CO2 Conversion,” Energy & Environmental Science 11, no. 3 (2018): 648-659.

[29]

Y. Qiu, L. Ma, D. Zeng, et al., “Efficient CO2 to CO Conversion at Moderate Temperatures Enabled by the Cobalt and Copper Co-Doped Ferrite Oxygen Carrier,” Journal of Energy Chemistry 46 (2020): 123-132.

[30]

Y. Qiu, L. Ma, M. Li, et al., “Copper and Cobalt Co-Doped Ferrites as Effective Agents for Chemical Looping CO2 Splitting,” Chemical Engineering Journal 387 (2020): 124150.

[31]

H. S. Lim, Y. Kim, D. Kang, M. Lee, A. Jo, and J. W. Lee, “Fundamental Aspects of Enhancing Low-Temperature CO2 Splitting to CO on a Double La2NiFeO6 Perovskite,” ACS Catalysis 11, no. 19 (2021): 12220-12231.

[32]

F. Orsini, D. Ferrero, S. F. Cannone, et al., “Exsolution-Enhanced Reverse Water-Gas Shift Chemical Looping Activity of Sr2FeMo0.6Ni0.4O6-δ Double Perovskite,” Chemical Engineering Journal 475 (2023): 146083.

[33]

L. Ma, Y. Qiu, M. Li, et al., “Spinel-Structured Ternary Ferrites as Effective Agents for Chemical Looping CO2 Splitting,” Industrial & Engineering Chemistry Research 59, no. 15 (2020): 6924-6930.

[34]

M. Ismail, W. Liu, M. T. Dunstan, and S. A. Scott, “Development and Performance of Iron Based Oxygen Carriers Containing Calcium Ferrites for Chemical Looping Combustion and Production of Hydrogen,” International Journal of Hydrogen Energy 41, no. 7 (2016): 4073-4084.

[35]

M. S. C. Chan, W. Liu, M. Ismail, Y. Yang, S. A. Scott, and J. S. Dennis, “Improving Hydrogen Yields, and Hydrogen: Steam Ratio in the Chemical Looping Production of Hydrogen Using Ca2Fe2O5,” Chemical Engineering Journal 296 (2016): 406-411.

[36]

D. Hosseini, F. Donat, P. M. Abdala, S. M. Kim, A. M. Kierzkowska, and C. R. Müller, “Reversible Exsolution of Dopant Improves the Performance of Ca2Fe2O5 for Chemical Looping Hydrogen Production,” ACS Applied Materials & Interfaces 11, no. 20 (2019): 18276-18284.

[37]

L. Wang, Y. Lin, Z. Huang, K. Zeng, and H. Huang, “Conversion of Carbon Dioxide to Carbon Monoxide: Two-Step Chemical Looping Dry Reforming Using Ca2Fe2O5-Zr0.5Ce0.5O2 Composite Oxygen Carriers,” Fuel 322 (2022): 124182.

[38]

Z. Sun, S. Chen, J. Hu, et al., “Ca2Fe2O5: A Promising Oxygen Carrier for CO/CH4 Conversion and Almost-Pure H2 Production With Inherent CO2 Capture Over a Two-Step Chemical Looping Hydrogen Generation Process,” Applied Energy 211 (2018): 431-442.

[39]

Z. Sun, X. Wu, C. K. Russell, et al., “Synergistic Enhancement of Chemical Looping-Based CO2 Splitting With Biomass Cascade Utilization Using Cyclic Stabilized Ca2Fe2O5 Aerogel,” Journal of Materials Chemistry A 7, no. 3 (2019): 1216-1226.

[40]

Z. Sun, H. Liu, H. Bai, et al., “The Crucial Role of Deoxygenation in Syngas Refinement and Carbon Dioxide Utilization During Chemical Looping-Based Biomass Gasification,” Chemical Engineering Journal 428 (2022): 132068.

[41]

Z. Sun, X. Zhang, H. Li, et al., “Chemical Looping Oxidative Steam Reforming of Methanol: A New Pathway for Auto-Thermal Conversion,” Applied Catalysis B: Environmental 269 (2020): 118758.

[42]

Z. Sun, T. Cai, C. K. Russell, et al., “Highly Efficient Methane Decomposition to H2 and CO2 Reduction to CO Via Redox Looping of Ca2FexAl2-xO5 Supported NiyFe3-yO4 Nanoparticles,” Applied Catalysis B: Environmental 271 (2020): 118938.

[43]

C. Yang, Y. Lu, L. Zhang, et al., “Defect Engineering on CeO2-Based Catalysts for Heterogeneous Catalytic Applications,” Small Structures 2, no. 12 (2021): 210058.

[44]

H. J. Harbin, D. K. Unruh, D. J. Casadonte, and S. J. Khatib, “Sonochemically Prepared Ni-Based Perovskites as Active and Stable Catalysts for Production of COx-Free Hydrogen and Structured Carbon,” ACS Catalysis 13, no. 7 (2023): 4205-4220.

[45]

Z. Sun, C. Hao, S. Toan, et al., “Recent Advances in Exsolved Perovskite Oxide Construction: Exsolution Theory, Modulation, Challenges, and Prospects,” Journal of Materials Chemistry A 11, no. 34 (2023): 17961-17976.

[46]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters 77, no. 18 (1996): 3865-3868.

[47]

B. Hammer, L. B. Hansen, and J. K. Nørskov, “Improved Adsorption Energetics Within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals,” Physical Review B 59, no. 11 (1999): 7413-7421.

[48]

P. E. Blöchl, “Projector Augmented-Wave Method,” Physical Review B 50, no. 24 (1994): 17953-17979.

[49]

G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,” Physical Review B 59, no. 3 (1999): 1758-1775.

[50]

H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-Zone Integrations,” Physical Review B 13, no. 12 (1976): 5188-5192.

[51]

G. Henkelman and H. Jónsson, “Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points,” Journal of Chemical Physics 113, no. 22 (2000): 9978-9985.

[52]

G. Henkelman, B. P. Uberuaga, and H. Jónsson, “A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths,” Journal of Chemical Physics 113, no. 22 (2000): 9901-9904.

[53]

D. Sheppard and G. Henkelman, “Paths to Which the Nudged Elastic Band Converges,” Journal of Computational Chemistry 32, no. 8 (2011): 1769-1771.

[54]

L. Cavé, T. Al, D. Loomer, S. Cogswell, and L. Weaver, “A STEM/EELS Method for Mapping Iron Valence Ratios in Oxide Minerals,” Micron 37, no. 4 (2006): 301-309.

[55]

V. K. Paidi, D. L. Brewe, J. W. Freeland, C. A. Roberts, and J. Van Lierop, “Role of Ce 4f Hybridization in the Origin of Magnetism in Nanoceria,” Physical Review B 99, no. 18 (2019): 180403.

[56]

M. Ismail, W. Liu, M. S. C. Chan, M. T. Dunstan, and S. A. Scott, “Synthesis, Application, and Carbonation Behavior of Ca2Fe2O5 for Chemical Looping H2 Production,” Energy & Fuels 30, no. 8 (2016): 6220-6232.

[57]

M. Machida, T. Kawada, H. Fujii, and S. Hinokuma, “The Role of CeO2 as a Gateway for Oxygen Storage Over CeO2-Grafted Fe2O3 Composite Materials,” Journal of Physical Chemistry C 119, no. 44 (2015): 24932-24941.

[58]

E. Sediva, A. J. Carrillo, C. E. Halloran, and J. L. M. Rupp, “Evaluating the Redox Behavior of Doped Ceria for Thermochemical CO2 Splitting Using Time-Resolved Raman Spectroscopy,” ACS Applied Energy Materials 4, no. 2 (2021): 1474-1483.

[59]

Z. Chen, Q. Jiang, H. An, et al., “Platinum Group Metal Catalyst (Ruox, PtOx, and Irox)-Decorated Ceria-Zirconia Solid Solution as High Active Oxygen Carriers for Solar Thermochemical CO2 Splitting,” ACS Catalysis 12, no. 13 (2022): 7719-7736.

[60]

L. Zhang, R. Chen, Y. Tu, et al., “Revealing the Crystal Facet Effect of Ceria in Pd/CeO2 Catalysts Toward the Selective Oxidation of Benzyl Alcohol,” ACS Catalysis 13, no. 4 (2023): 2202-2213.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/