Modulating the Local Charge Distribution of Single-Atomic Ru Sites for an Efficient Hydrogen Evolution Reaction
Youyu Long , Lingfeng Yang , Min Xi , Yifan Zhao , Hua Zhang , Tingting Liu , Anran Chen , Xuguang An , Guangzhi Hu , Zitao Ni
Carbon Energy ›› 2025, Vol. 7 ›› Issue (5) : e690
Modulating the Local Charge Distribution of Single-Atomic Ru Sites for an Efficient Hydrogen Evolution Reaction
Ruthenium (Ru)-based electrocatalysts show great promise as substitutes for platinum (Pt) for the alkaline hydrogen evolution reaction (HER) because of their efficient water dissociation capabilities. Nevertheless, the strong adsorption of Ru–OH intermediates (Ru-OHad) blocks the active site, leading to unsatisfactory HER performance. In this study, we report a universal ligand-exchange strategy for synthesizing a MOF-on-MOF-derived FeP–CoP heterostructure-anchored Ru single-atom site catalyst (Ru-FeP-CoP/NPC). The obtained catalyst shows a low overpotential (28 mV at 10 mA cm−2) and a high mass activity (9.29 A mg−1 at 100 mV), surpassing the performance of commercial Pt/C by a factor of 46. Theoretical studies show that regulating the local charge distribution of Ru single-atom sites could alleviate surrounding OH− blockages, accelerating water dissociation and facilitating hydrogen adsorption/desorption, thus enhancing HER activity. This work aims to inspire further design of highly active and durable electrocatalysts with tailored electronic properties for high-purity hydrogen production.
heterostructure catalyst / hydrogen evolution reaction / ligand exchange / metal–organic frameworks
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |